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1 Overview 
This document provides a final summary of the work performed by Georgia Tech and 
Reflective while supported by the Department of Homeland Security and United States 
Air Force under Contract No. FA8750-05-2-0214. The work described was performed 
between May 2005 and October 2007.  

1.1 Motivation for the Project 
Many software systems have evolved to include a Web-based component that makes 
them available to the public via the Internet and can expose them to a variety of Web-
based attacks. One of these attacks is SQL injection, which can give attackers 
unrestricted access to the databases underlying Web applications and has become 
increasingly frequent and serious.  
 
In general, SQL Injection Attacks (SQLIAs) are a class of code injection attacks that take 
advantage of a lack of validation of user input. These attacks occur when developers 
combine hard-coded strings with user-provided input to create dynamic queries. 
Intuitively, if user input is not properly validated, attackers may be able to change the 
developer’s intended SQL command by inserting new SQL keywords or operators 
through specially crafted input strings. To better illustrate, we introduce an example 
application that contains a simple SQL injection vulnerability and show how an attacker 
can leverage that vulnerability to perform an SQLIA. 

 
Figure 1: Example of interaction between a user and a typical Web application. 

Figure 1 shows an example of a typical Web-application architecture. In the example, the 
user interacts with a Web form that takes a login name and pin as inputs and submits 
them to a Web server. The Web server passes the user-supplied credentials to a servlet 
(show.jsp), which is a special type of Java application that runs on a Web application 
server, and whose execution is triggered by the submission of a URL from a client. 
 
The example servlet, whose code is partially shown in Figure 2,  implements a typical 
login functionality. It uses input parameters login and pin to dynamically build an 
SQL query or command. The login and pin are checked against the  credentials stored 
in the database. If they match, the corresponding user’s account information is returned. 
Otherwise, a null set is returned by the database, and the authentication fails. 
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Figure 2: Excerpt of a Java servlet implementation. 

 
The servlet then uses the response from the database to generate HTML pages that are 
sent back to the user’s browser by the Web server. Given the servlet code, if a user 
submits login and pin as “doe” and “123,” the application dynamically builds the 
query: 
 

SELECT acct FROM usersWHERElogin=’doe’ANDpin=123 
 
If login and pin match the corresponding entry in the database, doe’s account 
information is returned and then displayed by function displayAccount(). If there is 
no match in the database, function sendAuthFailed() displays an appropriate error 
message. An application that uses this servlet is vulnerable to SQLIAs.  For example, if 
an attacker enters “admin' -- ” as the user name and any value as the pin (e.g., “0”), 
the resulting query is: 
 
SELECT acct FROM users WHERE login='admin' -- ' AND pin=0 

 
In SQL, “--” is the comment operator, and everything after it is ignored.  Therefore, 
when performing this query, the database simply searches for an entry where login is 
equal to admin and returns that database record.  After the “successful” login, function 
displayAccount() reveals the admin's account information to the attacker. 
 
Note that this example represents an extremely simple kind of SQLIA, and we present it 
for illustrative purposes only. There is a wide variety of complex and sophisticated SQL 
exploits available to attacks, as we discuss in detail in [6]. 

1.2 Teaming Information 
The project team involves two organizations: Georgia Tech and Reflective LLC. Georgia 
Tech’s team consists of the following members: 

• Alessandro Orso – Assistant professor (static/dynamic program analysis, testing). 
• Wenke Lee – Associate professor (security). 
• William Halfond, James Clause, and Jeremy Viegas – Graduate students. 
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Reflective’s team is composed as follows: 
• Adam Shostack – CTO (security analysis, growing customer base). 
• Jonathan Amsler – VP for Technology. 
• Dave Clauson – CEO. 
• Engineering support staff. 

1.3 Project Goals 
The first goal of the project was to develop and implement a highly automated technique 
against SQLIAs that is able to detect, stop, and report injection attacks before they reach 
the database and do any harm.  
 

 
Figure 3: General overview of the proposed approach. 

 
Figure 3 provides a general, intuitive overview of the proposed approach. Given a 
previously developed Web application, our tool would automatically transform the 
application into a semantically equivalent application that is protected from SQLIAs. The 
second goal of the project was to develop a testbed that could be used by us and by other 
researchers and practitioners to evaluate tools for SQL injection detection and prevention. 
The third goal of the project was to make the tools developed during the project 
industrial strength and to commercialize them. 
 
Each of these three goals corresponds to a main task in the project. Figure 4 shows a 
Gantt diagram that includes milestones and deliverables for such tasks. (Note that the 
diagram represents the project as it was originally planned, over 24 month. The project 
was later on granted a five-month extension to help the commercialization effort.) In the 
project, Georgia Tech was the main responsible for Tasks/Goals 1 and 2, whereas 
Reflective was in charge of the commercialization of the tool, with technical support 
from Georgia Tech for the technology transfer.  
 
In the rest of this document, we first discuss how and to what extent we achieved the 
goals of the project (Section 2) and then list the publications that were produced during 
the project (Section 3). These publications are attached at the end of the document to 
provide further details about the work performed during the project. 
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ID Task Name Start Duration
2005 2006 2007

May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan Feb Mar Apr May

2 60d5/2/2005Parser development

3 150d7/1/2005Robustness and reliability testing

4 150d9/1/2005Implementation

5 90d1/29/2006Performance improvement

7 180d4/29/2006Integration into Eclipse

8 120d6/1/2006Integration into JBoss

10 90d9/29/2006Feedback mechanism definition

11 120d12/1/2006Feedback mechanism 
implementation

12 90d2/1/2007Feedback mechanism integration

14 60d5/2/2005Survey and taxonomy

16 120d6/1/2005Subject collection and adaptation

17 180d7/1/2005Infrastructure

19 90d12/28/2005Integration with DETER

22 356d5/1/2006Commercialization

1 730d5/2/2005Tool Development

13 330d5/2/2005Testbed Development

21 356d5/1/2006Commercialization

Jun Jul

6 0d4/29/2006Release of stand -alone tool

0d12/1/2006Release of Jboss /Eclipse plug -ins9

18 0d12/28/2005Testbed Deployment

20 0d3/28/2006DETER feasibility study delivery

15 0d7/8/2005Delivery of taxonomy

 
Figure 4: Project milestones and deliverables. 

2 Accomplishments 
This section discusses the accomplishments for this project grouped by tasks and 
subtasks. 

2.1 Task 1 – Tool Development 
The overall goal of this task was to implement a tool to detect and prevent SQLIAs based 
on a technique, called Amnesia, which we defined in preliminary work for the project. 
The original plan was to develop the tool in three flavors: a stand-alone tool, an Eclipse 
plug-in, and a plug-in for the JBoss application server. In the first part of the project, we 
implemented Amnesia as a stand-alone tool and empirically assessed its performance on 
a set of real applications and attacks. Although Amnesia performed well in our 
evaluation, it also showed some limitations. In particular, being based on a conservative 
static analysis, Amnesia could generate false positives in cases where the analysis was 
too imprecise. To address this issue, we leveraged what we learned while defining and 
developing Amnesia and developed a new technique and tool called Wasp. Wasp 
improves on Amnesia in many ways. In particular, under some assumptions, it is fully 
automated, generates no false negatives, produces few (and easy to eliminate) false 
positives, and has minimal deployment requirements. Therefore, we modified our initial 
plan and, instead of implementing two additional versions of the Amnesia tool, we 
focused on Wasp and on its implementation. Wasp is therefore the tool that is currently 
being commercialized by Reflective. 
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Figure 5: High-level overview of the Wasp approach and tool. 

 
Figure 5 provides a high-level view of Wasp, which is discussed in detail in [1] and [3]. 
We provide an overview of the approach to make the document self-contained. 
Intuitively, Wasp works by identifying “trusted” strings in an application and allowing 
only these trusted strings to be used to create the semantically relevant parts of a SQL 
query, such as keywords or operators. The general mechanism that we use to implement 
this approach is based on dynamic tainting, which marks and tracks certain data in a 
program at runtime. The kind of dynamic tainting that we use gives our approach several 
important advantages over techniques based on other mechanisms. In particular, 
compared to other existing techniques based on dynamic tainting, our approach makes 
several conceptual and practical improvements that take advantage of the specific 
characteristics of SQLIAs.  
 
The first conceptual advantage of our approach is the use of positive tainting. Positive 
tainting identifies and tracks trusted data, whereas traditional (“negative”) tainting 
focuses on untrusted data. In the context of SQLIAs, there are several reasons why 
positive tainting is more effective than negative tainting. First, in Web applications, 
sources of trusted data can be identified more easily and accurately than untrusted data 
sources. Therefore, the use of positive tainting leads to increased automation. Second, the 
two approaches significantly differ in how they are affected by incompleteness. With 
negative tainting, failure to identify the complete set of untrusted data sources can result 
in false negatives, that is, successful and undetected attacks. With positive tainting, 
missing trusted data sources could result in false positives (i.e., legitimate accesses can be 
prevented from completing). Using our approach, however, false positives are likely to be 
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detected during testing, before release. Our approach provides specific mechanisms for 
helping developers detect false positives early, identify their sources, and easily eliminate 
them in future runs by tagging the identified sources as trusted. 
 
The second conceptual advantage of our approach is the use of flexible syntax-aware 
evaluation. Syntax-aware evaluation lets us address security problems that are derived 
from mixing data and code while still allowing for this mixing to occur. More precisely, 
it gives developers a mechanism for regulating the usage of string data based not only on 
its source, but also on its syntactic role in a query string. This way, developers can use a 
wide range of external input sources to build queries, while protecting the application 
from possible attacks introduced via these sources. 
  
The practical advantages of our approach are that it imposes a low overhead on the 
application and has minimal deployment requirements. Efficiency is achieved by using a 
specialized library, called MetaStrings, that accurately and efficiently assigns and tracks 
trust markings at runtime. The only deployment requirements for our approach are that 
the Web application must be instrumented and it must be deployed with our MetaStrings 
library, which is done automatically. The approach does not require any customized 
runtime system or additional infrastructure. 
 
Wasp performed extremely well in our empirical evaluation, which we performed on the 
testbed developed as part of Task 2. For each application in the testbed, we protected it 
with WASP, targeted it with a large set of attacks and legitimate accesses, and assessed 
the ability of Wasp to detect and prevent attacks without stopping legitimate accesses. 
Wasp was able to stop all of the attacks without generating false positives for any of the 
legitimate accesses. Moreover, Wasp proved to be efficient, imposing a low overhead on 
the Web applications. 
 
We conclude the discussion of Task 1 with a summary of its subtasks and how we 
accomplished them: 

• Parser development: completed. The goal of this subtask was to develop a 
database parser that would integrate with the tools developed within the project. 
We developed two different database parsers; one for generic SQL-92 based 
queries and a second one for a popular variant that is used by PostgreSQL 
databases. The implementation is modular and has been integrated with both 
Amnesia and Wasp. 

• Robustness and reliability testing: completed. The goal of this subtask was to 
evaluate the implementation and development of our tools with respect to their 
robustness and reliability. We performed this evaluation in-house (through our 
own testing), in the field (based on feedback from users of the tool), and through 
Reflective. 

• Tool implementation: completed. The goal of this subtask was to improve the 
implementation of Amnesia and Wasp to make them ready to be deployed as 
commercial applications. We developed both tools and then decided to focus 
mostly on Wasp, as discussed earlier in this section. The tool is currently 
completed and is being commercialized by Reflective.  

• Performance improvement: completed. The goal of this subtask was to improve 
the performance of our tools. We completed this subtask by leveraging the testbed 
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developed as part of Task 2 and assessing the performance of our tools when used 
on the applications in the testbed. We identified several ways to improve Wasp’s 
performance and implemented them in the tool.  

• Integration into Eclipse and JBoss: canceled. As discussed at the beginning of 
this section, we redirected the effort allocated for these two tasks to the 
development of our second tool, Wasp, which was not initially planned. 

• Feedback mechanism definition, implementation, and integration: completed. 
The goal of these subtasks was to develop a feedback mechanism that allowed 
system administrator to analyze, in case of SQLIAs, the attacks and their causes. 
We developed two different mechanisms and integrated them in both Amnesia 
and Wasp. The first one is a logging mechanism, which stores information about 
attacks identified by the tools together with contextual information (e.g., the 
source of a malicious string). The second is a visualization mechanism that allows 
for visualizing, in graphical and easier to consume fashion, the information 
logged about the attacks. 

2.2 Task 2 – Testbed Development 
The overall goal of this task was to develop an evaluation testbed that provides tool 
developers (and users) with a small network on which they can launch SQLIAs against 
various applications and measure the success of their detection and prevention technique 
along with its execution overhead. The testbed should consist of (1) a set of machines 
connected through a network, (2) a set of applications installed on the machines and 
potentially vulnerable to SQLIAs, and (3) a set of tools and utilities to automatically 
perform SQLIAs on the applications.  Figure 6 provides a high-level view of the testbed. 
As shown in the figure, the testbed will let a user select an application and a set of attacks 
and will automatically perform the attacks and assess their outcome. 
 

 
Figure 6: Overview of the testbed. 

 
We developed the testbed and released it. So far, the testbed has been used extensively by 
us for our evaluation of Amnesia and Wasp. The testbed has also been used externally by 
other research groups to evaluate their techniques against SQL injection. 
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As we did for Task 1, we summarize Task 2’s subtasks and how we accomplished them: 
• Survey and taxonomy: completed. The goal of this subtask was to (1) provide an 

overview of current techniques that are being used to attack Web applications 
using SQL Injection and (2) compare the ability of existing protection techniques 
to prevent these attacks.  We completed the survey, uploaded it to the Jiffy 
system, and published it [6]. 

• Subject collection and adaptation: completed. The goal of this subtask was to 
identify and collect applications to be used within our testbed. During the life of 
the project, we have collected fourteen applications that are vulnerable to 
SQLIAs. These applications are mainly commercial applications, but include also 
applications from other sources that have been used for evaluation purposes in 
related work. All of the applications are able to run within our testbed 
infrastructure and are associated with a large set of representative attacks and 
legitimate accesses. 

• Infrastructure development: completed. The goal of this subtask was to develop 
the support infrastructure for the testbed. All elements of the testbed have been 
developed.  These elements include the fourteen vulnerable applications collected 
as part of the previous subtask, a web application scanner and an attack generator, 
a testing harness for running and evaluating SQL injection countermeasures, and 
configuration tools to manage server loads effectively. This infrastructure 
provides us with the ability to evaluate the effectiveness of the tools developed 
within the project against real-world applications.  

• Feasibility study for Integration with DETER: completed. The goal of this 
subtask was to investigate whether our testbed infrastructure could be integrated 
with DETER and to explore a possible design for such integration. We produced a 
document that discusses our findings and that was uploaded on the Jiffy system. 

2.3 Task 3 – Commercialization 
The commercialization of our first tool, Amnesia, started in May 2006. Shortly after that, 
we decided to switch our focus to our second tool, Wasp. As we discussed above, Wasp 
improved several aspects of Amnesia and was therefore a better candidate for our 
commercialization efforts. Due to some IP related issues between Georgia Tech and 
Reflective, the commercialization of Wasp started late in the lifetime of the project. For 
this reason, we asked for and obtained a five-month no-cost extension to the contract. 
 
Our technology transition plan is manifold, including the distribution of the tool through 
the Georgia Tech Research Center (GTRC), through a website in the form of a free 
download for researchers, and through personal contacts. These channels have led so far 
to the release of the tool to twelve universities and two research labs. Although these 
contacts are promising from a dissemination standpoint, they are unlikely to become 
commercialization venues. Therefore, our main commercialization effort is being 
performed through Reflective. In the first phase of the commercialization, Reflective 
evaluated both of the tools developed within the project (Amnesia in Quarter 5 and Wasp 
in Quarter 6), with positive results. After deciding to focus mostly on Wasp for the 
remainder of the project, Reflective started to contact organizations and schedule demos 
of the tool. To support this effort, Reflective and Georgia Tech developed a demo of 
Wasp that can be run both locally and remotely, through a Web interface. 
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Reflective is currently discussing possible commercialization opportunities with several 
organizations, including Internet Security Systems, TKCC, Dept. of Military Health, 
NSA, SAIC, Inovis, Bank of America, Citicorp, and RSA Security. The first demos of 
Wasp were shown to these organizations at the end of 2007, and two of the organizations 
are currently evaluating Wasp in-house for possible adoption. Despite the end of the 
contract, Georgia Tech and Reflective have an agreement in place and will continue the 
commercialization of the tool. 

3 Publications (refereed) 
The work performed within the project led to a number of publications in premier 
international journals and conferences. We provide a list of these publications and attach 
them at the end of this document. 

3.1 Journals 
• [1] W. Halfond, A. Orso, and P. Manolios. WASP: Protecting Web Applications 

Using Positive Tainting and Syntax-Aware Evaluation. IEEE Transactions on 
Software Engineering (TSE), Vol 34, Issue 1, Jan 2008, pages 65–81. 

3.2 Books and Parts of Books 
• [2] W. Halfond and A. Orso. Detection and Prevention of SQL Injection Attacks. 

Malware Detection, Series: Advances in Information Security, Springer, Vol. 27, 
M. Christodorescu, S. Jha, D. Maughan, D. Song, C. Wang (Eds.), 2007, XII. 

3.3 Conferences 
• [3] W. Halfond, A. Orso, and P. Manolios. Using Positive Tainting and Syntax-

Aware Evaluation to Protect Web Applications. Proceedings of the 14th ACM 
SIGSOFT Symposium on the Foundations of Software Engineering (FSE 2006), 
Portland, Oregon, USA, November 2006, pages 175–185. 

• [4] W. Halfond and A. Orso. Command-Form Coverage for Testing Database 
Applications. Proceedings of the IEEE and ACM International Conference on 
Automated Software Engineering (ASE 2006), Tokyo, Japan, September 2006, 
pages 69–78. 

• [5] W. Halfond and A. Orso. Preventing SQL Injection Attacks Using 
AMNESIA. Proceedings of the 28th IEEE and ACM SIGSOFT International 
Conference on Software Engineering (ICSE 2006) – Formal Demos track. 
Shanghai, China, May 2006, pages 795–798. 

• [6] J. Viegas, W. Halfond, and A. Orso. A Classification of SQL Injection Attacks 
and Prevention Techniques. Proceedings of the IEEE International Symposium on 
Secure Software Engineering (ISSSE 2006), Washington, D.C., USA, March 
2006, pages 12–23. 
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W A S P: Prot e cting W e b A pplic a tions U sing
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W illi a m G .J . H a lfond , A l e ss a ndro O rso , M e mb er, I E E E C omput er S oc i e ty , a nd
P a n a g iot is M a no lios , M e mb er, I E E E C omput er S oc i e ty

A b stra ct—Many software systems have evolved to include a W eb-based component tha t makes them ava ilable to the public via the
Interne t and can expose them to a varie ty of W eb-based a ttacks. O ne of these a ttacks is S Q L injection, which can give a ttackers
unrestricted access to the da tabases tha t underlie W eb applica tions, which has become incre asingly frequent and serious. This paper
presents a new highly automa ted approach for protecting W eb applica tions aga inst S Q L injection tha t has both conceptua l and
practica l advantages over most existing techniques. F rom a conceptua l standpoint, the approach is based on the nove l ide a of positive
ta inting and on the concept of syntax-aware eva lua tion. F rom a practica l standpoint, our technique is precise and e fficient, has minima l
deployment requirements, and incurs a negligible performance overhe ad in most cases. W e have implemented our techniques in the
W eb Applica tion S Q L-injection Preventer (W A S P) tool, which we used to perform an empirica l eva lua tion on a wide range of W eb
applica tions tha t we subjected to a large and varied se t of a ttacks and legitima te accesses. W A S P was able to stop a ll of the otherwise
successful a ttacks and did not genera te any fa lse positives.

In d e x T erm s—S ecurity, S Q L injection, dynamic ta inting, runtime monitoring.
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1 IN T R O D U C TI O N

WEB applications are applications that can be accessed
over the Internet by using any compliant Web browser

that runs on any operating system and architecture. They
have become ubiquitous due to the convenience, flexibility,
availability, and interoperability that they provide.

Unfortunately, Web applications are also vulnerable to a
variety of new security threats. SQL Injection Attacks
(SQLIAs) are one of the most significant of such threats
[6]. SQLIAs have become increasingly frequent and pose
very serious security risks because they can give attackers
unrestricted access to the databases that underlie Web
applications.

Web applications interface with databases that contain
information such as customer names, preferences, credit
card numbers, purchase orders, and so on. Web applica-
tions build SQL queries to access these databases based, in
part, on user-provided input. The intent is that Web
applications will limit the kinds of queries that can be
generated to a safe subset of all possible queries, regardless
of what input users provide. However, inadequate input
validation can enable attackers to gain complete access to
such databases. One way in which this happens is that
attackers can submit input strings that contain specially

encoded database commands. When the Web application
builds a query by using these strings and submits the query
to its underlying database, the attacker’s embedded
commands are executed by the database and the attack
succeeds. The results of these attacks are often disastrous
and can range from leaking of sensitive data (for example,
customer data) to the destruction of database contents.

Researchers have proposed a wide range of alternative
techniques to address SQLIAs, but many of these solutions
have limitations that affect their effectiveness and practi-
cality. For example, one common class of solutions is based
on defensive coding practices, which have been less than
successful for three main reasons. First, it is difficult to
implement and enforces a rigorous defensive coding
discipline. Second, many solutions based on defensive
coding address only a subset of the possible attacks. Third,
legacy software poses a particularly difficult problem
because of the cost and complexity of retrofitting existing
code so that it is compliant with defensive coding practices.

In this paper, we propose a new highly automated
approach for dynamic detection and prevention of SQLIAs.
Intuitively, our approach works by identifying “trusted”
strings in an application and allowing only these trusted
strings to be used to create the semantically relevant parts
of a SQL query such as keywords or operators. The general
mechanism that we use to implement this approach is based
on dynamic tainting, which marks and tracks certain data in
a program at runtime.

The kind of dynamic tainting that we use gives our
approach several important advantages over techniques
based on other mechanisms. Many techniques rely on
complex static analyses in order to find potential vulner-
abilities in the code (for example, [11], [18], [29]). These
kinds of conservative static analyses can generate high rates
of false positives and can have scalability issues when
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applied to large complex applications. In contrast, our
approach does not rely on complex static analyses and is
both efficient and precise. Other techniques involve ex-
tensive human effort (for example, [5], [21], [27]). They
require developers to manually rewrite parts of the Web
applications, build queries using special libraries, ormark all
points in the code at which malicious input could be
introduced. Our approach is highly automated and, in most
cases, requires minimal or no developer intervention. Last,
several proposed techniques require the deployment of
extensive infrastructure or involve complex configurations
(for example, [2], [26], [28]). Our approach does not require
additional infrastructure and can be automatically deployed.

Compared to other existing techniques based on dynamic
tainting (for example, [9], [23], [24]), our approach makes
several conceptual and practical improvements that take
advantage of the specific characteristics of SQLIAs. The first
conceptual advantage of our approach is the use of positive
tainting. Positive tainting identifies and tracks trusted data,
whereas traditional (“negative”) tainting focuses on un-
trusted data. In the context of SQLIAs, there are several
reasons why positive tainting is more effective than
negative tainting. First, in Web applications, sources of
trusted data can more easily and accurately be identified
than untrusted data sources. Therefore, the use of positive
tainting leads to increased automation. Second, the two
approaches significantly differ in how they are affected by
incompleteness. With negative tainting, failure to identify
the complete set of untrusted data sources can result in false
negatives, that is, successful and undetected attacks. With
positive tainting, missing trusted data sources can result in
false positives (that is, legitimate accesses can be prevented
from completing). False positives that occur in the field
would be problematic. Using our approach, however, false
positives are likely to be detected during prerelease testing.
Our approach provides specific mechanisms for helping
developers detect false positives early, identify their
sources, and easily eliminate them in future runs by tagging
the identified sources as trusted.

The second conceptual advantage of our approach is the use
of flexible syntax-aware evaluation. Syntax-aware evalua-
tion lets us address security problems that are derived from
mixing data and code while still allowing for this mixing to
occur. More precisely, it gives developers a mechanism for
regulating the usage of string data based not only on its
source but also on its syntactical role in a query string. This
way, developers can use a wide range of external input
sources to build queries while protecting the application
from possible attacks introduced via these sources.

The practical advantages of our approach are that it imposes
a low overhead on the application and it has minimal
deployment requirements. Efficiency is achieved by using a
specialized library, called MetaStrings, that accurately and
efficiently assigns and tracks trust markings at runtime. The
only deployment requirements for our approach are that the
Web application must be instrumented and it must be
deployed with our MetaStrings library, which is done
automatically. The approach does not require any custo-
mized runtime system or additional infrastructure.

In this paper, we also present the results of an extensive
empirical evaluation of the effectiveness and efficiency of
our technique. To perform this evaluation, we implemented
our approach in a tool called Web Application SQL-
injection Preventer (WASP) and evaluated WASP on a set
of 10 Web applications of various types and sizes. For each
application, we protected it with WASP, targeted it with a
large set of attacks and legitimate accesses, and assessed the
ability of our technique to detect and prevent attacks
without stopping legitimate accesses. The results of the
evaluation are promising. Our technique was able to stop all
of the attacks without generating false positives for any of
the legitimate accesses. Moreover, our technique proved to
be efficient, imposing only a low overhead on the Web
applications.

The main contributions of this work are listed as follows:

1. a new automated technique for preventing SQLIAs
based on the novel concept of positive tainting and
on flexible syntax-aware evaluation,

2. a mechanism to perform efficient dynamic tainting
of Java strings which precisely propagates trust
markings while strings are manipulated at runtime,

3. a tool that implements our SQLIA prevention
technique for Java-based Web applications and has
minimal deployment requirements, and

4. an empirical evaluation of the technique that shows
its effectiveness and efficiency.

The rest of this paper is organized as follows: In Section 2,
we introduce SQLIAs. Sections 3 and 4 discuss the approach
and its implementation. Section 5 presents the results of our
evaluation. We discuss related work in Section 6 and
conclude in Section 7.

2 M O TIV A TI O N : S T R U C T U R E D Q U E R Y L A N G U A G E
IN J E C TI O N A T T A C K S

In this section, we first motivate our work by introducing an
example of an SQLIA that we use throughout the paper to
illustrate our approach and, then, we discuss the main types
of SQLIAs in detail.

In general, SQLIAs are a class of code injection attacks
that take advantage of the lack of validation of user input.
These attacks occur when developers combine hard-coded
strings with user-provided input to create dynamic queries.
Intuitively, if user input is not properly validated, attackers
may be able to change the developer’s intended SQL
command by inserting new SQL keywords or operators
through specially crafted input strings. Interested readers
can refer to the work of Su and Wassermann [27] for a
formal definition of SQLIAs. SQLIAs leverage a wide range
of mechanisms and input channels to inject malicious
commands into a vulnerable application [12]. Before
providing a detailed discussion of these various mechan-
isms, we introduce an example application that contains a
simple SQL injection vulnerability and show how an
attacker can leverage that vulnerability.

Fig. 1 shows an example of a typical Web application
architecture. In the example, the user interacts with a Web
form that takes a login name and pin as inputs and submits
them to a Web server. The Web server passes the user-
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supplied credentials to a servlet (show . jsp), which is a
special type of Java application that runs on a Web
application server and whose execution is triggered by the
submission of a URL from a client.

The example servlet, whose code is partially shown in
Fig. 2, implements a login functionality that we can find in a
typical Web application. It uses input parameters login
and pin to dynamically build an SQL query or command.
(For simplicity, in the rest of this paper, we use the terms
query and command interchangeably.) The login and pin
are checked against the credentials stored in the database. If
they match, the corresponding user’s account information is
returned. Otherwise, a null set is returned by the database
and the authentication fails. The servlet then uses the
response from the database to generate HTML pages that
are sent back to the user’s browser by the Web server.

For this servlet, if a user submits login and pin as “doe”
and “123,” the application dynamically builds the query:

If login and pin match the corresponding entry in the
database, doe’s account information is returned and then
displayed by function displayAccount(). If there is no
match in the database, function sendAuthFai led() dis-
plays an appropriate error message. An application that
uses this servlet is vulnerable to SQLIAs. For example, if an
attacker enters “admin’ – –” as the username and any
value as the pin (for example, “0”), the resulting query is

In SQL, “– –” is the comment operator and everything after
it is ignored. Therefore, when performing this query, the
database simply searches for an entry where login is equal

to admin and returns that database record. After the
“successful” login, the function displayAccount() re-
veals the admin’s account information to the attacker.

It is important to stress that this example represents an
extremely simple kind of attack and we present it for
illustrative purposes only. Because simple attacks of this
kind are widely used in the literature as examples, they are
often mistakenly viewed as the only types of SQLIAs. In
reality, there is a wide variety of complex and sophisticated
SQL exploits available to attackers. We next discuss the
main types of such attacks.

2.1 Mai n V aria n t s o f Stru ct ur e d Q u ery L a n g u a g e
In j e cti o n A tta c k s

Over the past several years, attackers have developed a
wide array of sophisticated attack techniques that can be
used to exploit SQL injection vulnerabilities. These techni-
ques go beyond the well-known SQLIA examples and take
advantage of esoteric and advanced SQL constructs.
Ignoring the existence of these kinds of attacks leads to
the development of solutions that only partially address the
SQLIA problem.

For example, developers and researchers often assume
that SQLIAs are introduced only via user input that is
submitted as part of a Web form. This assumption misses the
fact that any external input that is used to build a query string
may represent a possible channel for SQLIAs. In fact, it is
common to see other external sources of input such as fields
from an HTTP cookie or server variables used to build a
query. Since cookie values are under the control of the user’s
browser and server variables are often set using values from
HTTP headers, these values are actually external strings that
can be manipulated by an attacker. In addition, second-order
injections useadvancedknowledgeofvulnerable applications
to introduce attacks by using otherwise properly secured
input sources [1]. A developer may suitably escape, type-
check, and filter input that comes from the user and assume
that it is safe. Later on, when that data is used in a different
context or to build a different type of query, the previously
safe input may enable an injection attack.

Once attackers have identified an input source that can
be used to exploit an SQLIA vulnerability, there are many
different types of attack techniques that they can leverage.
Depending on the type and extent of the vulnerability, the
results of these attacks can include crashing the database,
gathering information about the tables in the database
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schema, establishing covert channels, and open-ended
injection of virtually any SQL command. Here, we
summarize the main techniques for performing SQLIAs.
We provide additional information and examples of how
these techniques work in [12].

2.1.1 T autologies
Tautology-based attacks are among the simplest and best
known types of SQLIAs. The general goal of a tautology-
based attack is to inject SQL tokens that cause the query’s
conditional statement to always evaluate to true. Although
the results of this type of attack are application specific, the
most common uses are bypassing authentication pages and
extracting data. In this type of injection, an attacker exploits
a vulnerable input field that is used in the query’s WHERE
conditional. This conditional logic is evaluated as the
database scans each row in the table. If the conditional
represents a tautology, the database matches and returns all
of the rows in the table as opposed to matching only one
row, as it would normally do in the absence of injection. An
example of a tautology-based SQLIA for the servlet in our
example in Section 2 is the following:

Because the WHERE clause is always true, this query will
return account information for all of theusers in thedatabase.

2.1.2 Union Q ueries
Although tautology-based attacks can be successful, for
instance, in bypassing authentication pages, they do not give
attackers much flexibility in retrieving specific information
from a database.Union queries are a more sophisticated type
of SQLIA that canbeusedbyanattacker toachieve this goal in
that they cause otherwise legitimate queries to return
additional data. In this type of SQLIA, attackers inject a
statement of the form “UN I ON < i n j ec t ed que r y > .” By
suitably defining < i n j ec t ed que r y > , attackers can re-
trieve information from a specified table. The outcome of
this attack is that the database returns a data set that is the
union of the results of the original query with the results of
the injected query. In our example, an attacker could
perform a Union Query injection by injecting the text
“ 0 UN I ON SELECT ca r dNo f r om C r ed i t Ca r ds whe r eacc t No ¼
7032   ” into the login field. The application would then
produce the following query:

The original query should return the null set and the
injected query returns data from the “CreditCards” table. In
this case, the database returns field “cardNo” for account
“7032.” The database takes the results of these two queries,
unites them, and returns them to the application. In many
applications, the effect of this attack would be that the value
for “cardNo” is displayed with the account information.

2.1.3 P iggybacke d Q ueries
Similar to union queries, this kind of attack appends
additional queries to the original query string. If the attack
is successful, the database receives and executes a query

string that contains multiple distinct queries. The first query
is generally the original legitimate query, whereas subse-
quent queries are the injected malicious queries. This type
of attack can be especially harmful because attackers can
use it to inject virtually any type of SQL command. In our
example, an attacker could inject the text “0; drop table
users” into the pin input field and have the application
generate the following query:

The database treats this query string as two queries
separated by the query delimiter (“;”) and executes both.
The second malicious query causes the database to drop the
users table in the database, which would have the
catastrophic consequence of deleting all user information.
Other types of queries can be executed using this technique
such as the insertion of new users into the database or the
execution of stored procedures. Note that many databases
do not require a special character to separate distinct
queries, so simply scanning for separators is not an effective
way to prevent this attack technique.

2.1.4 Ma lformed Q ueries
Union queries and piggybacked queries let attackers per-
form specific queries or execute specific commands on a
database, but require some prior knowledge of the database
schema, which is often unknown. Malformed queries allow
for overcoming this problem by taking advantage of overly
descriptive error messages that are generated by the
database when a malformed query is rejected. When these
messages are directly returned to the user of the Web
application, instead of being logged for debugging by
developers, attackers can make use of the debugging
information to identify vulnerable parameters and infer
the schema of the underlying database. Attackers exploit
this situation by injecting SQL tokens or garbage input that
causes the query to contain syntax errors, type mismatches,
or logical errors. Considering our example, an attacker
could try causing a type mismatch error by injecting the
following text into the pin input field: “conve r t ð i n t ;
ðse l ec t t op 1 name f r om sysob j ec t s whe r e x t ype ¼ ‘u’ÞÞ. ”
The resulting query generated by the Web application is the
following:

The injected query extracts the name of the first user
table x t ype ¼ ‘u’ from the database’s metadata table
sysobjects. It then converts this table name to an integer.
Because the name of the table is a string, the conversion is
illegal and the database returns an error. For example, a
SQL Server may return the following error: “M icrosoft O LE
D B Provider for S Q L Server (0x80040E07) Error converting
nvarchar value ’ CreditCards’ to a column of data type int.” From
this message, the attacker can 1) see that the database is an
SQL Server and 2) discover that the name of the first user-
defined table in the database is “CreditCards” (the string
that caused the type conversion to occur). A similar strategy
can be used to systematically extract the name and type of
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each column in the given table. Using this information
about the schema of the database, an attacker can create
more precise attacks that specifically target certain types of
information. Malformed queries are typically used as a
preliminary information-gathering step for other attacks.

2.1.5 Inference
Similar to malformed queries, inference-based attacks let
attackers discover information about a database schema.
This type of SQLIAs creates queries that cause an applica-
tion or database to behave differently based on the results of
the query. This way, even if an application does not directly
provide the results of the query to the attacker, it is possible
to observe side effects caused by the query and deduce its
results. One particular type of attack based on inference is a
timing attack, which lets attackers gather information from a
database by observing timing delays in the database’s
responses. To perform a timing attack, attackers structure
their injected queries in the form of an if-then statement
whose branch condition corresponds to a question about
the contents of the database. The attacker then uses the
WAITFOR keyword along one of the branches, which causes
the database to delay its response by a specified time. By
measuring the increase or decrease in the database response
time, attackers can infer which branch was taken and the
answer to the injected question. For our example servlet, an
attacker could inject the following text into the login
parameter: “ l ega l Use r 0 AND ASC I I ðSUBSTR I NGððse l ec t t op
1 name f r om sysob j ec t sÞ; 1; 1ÞÞ > X WA I TFOR 5   .” This
injection produces the following query:

In the attack, the SUBSTRING function is used to extract the
first character of the database’s first table’s name, which is
then converted into an ASCII value and compared with the
value of X . If the value is greater, the attacker will be able to
observe a 10 s delay in the database response. The attacker
can continue this way and use a binary-search strategy to
identify the value of each character in the table’s name.
Another well-known type of inference attack is the blind
SQL injection [12].

2.1.6 A lterna te E ncodings
Many types of SQLIAs involve the use of special characters
such as single quotes, dashes, or semicolons as part of the
inputs to a Web application. Therefore, basic protection
techniques against these attacks check the input for the
presence of such characters and escape them or simply
block inputs that contain them. Alternate encodings let
attackers modify their injected strings in a way that avoids
these typical signature-based and filter-based checks.
Encodings such as ASCII, hexadecimal, and Unicode can
be used in conjunction with other techniques to allow an
attack to escape straightforward detection approaches that
simply scan for certain known “bad characters.” Even if
developers account for alternate encodings, this technique
can still be successful because alternate encodings can target
different layers in the application. For example, a developer

may scan for a Unicode or hexadecimal encoding of a single
quote and not realize that the attacker can leverage database
functions to encode the same character. An effective code-
based defense against alternate encodings requires devel-
opers to be aware of all of the possible encodings that could
affect a given query string as it passes through the different
application layers. Because developing such a complete
protection is very difficult in practice, attackers have been
successful in using alternate encodings to conceal attack
strings. The following example attack (from [13]) shows the
level of obfuscation that can be achieved using alternate
encodings. In the attack, the pin field is injected with string
“0; exec(char(0x73687574646f776e)),” which re-
sults in the following query:

This attack leverages the char() function provided by
some databases and uses ASCII hexadecimal encoding. The
stream of numbers in the second part of the injection is the
ASCII hexadecimal encoding of the attack string. This
encoded string is inserted into a query by using some other
type of attack profile and, when it is executed by the
database, translates into the shutdown command.

2.1.7 Leveraging S tored Procedures
Another strongly advertised solution for the problem of
SQLIAs is the use of stored procedures, that is, procedures
that are stored in the database and can be run by the
database engine. Stored procedures provide developers
with an extra layer of abstraction because they can enforce
businesswide database rules, independent of the logic of
individual Web applications. Unfortunately, it is a common
misconception that the mere use of stored procedures
protects an application from SQLIAs: Similarly to any other
software, the safety of stored procedures depends on the
way in which they are coded and on the use of adequate
defensive coding practices. Therefore, parametric stored
procedures could also be vulnerable to SQLIAs, just like the
rest of the code in a Web application.

The following example demonstrates how a (parametric)
stored procedure can be exploited via an SQLIA. In this
scenario, assume that the query string constructed by our
example servlet has been replaced by a call to the following
stored procedure:

CREATE PROCEDURE DBO . isAuthent icated
@userName varchar2, @pin int

AS
EXEC("SELECT acct FROM users WHERE login=‘"
+ @userName + "‘ and pin= " +@pin);

GO

To perform an SQLIA that exploits this stored procedure,
the attacker can simply inject the text “’ ; SHUTDOWN; – –”
into the userName field. This injection causes the stored
procedure to generate the following query, which would
result in the database being shut down:
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3 O U R A P P R O A C H

Our approach against SQLIAs is based on dynamic tainting,
which has previously been used to address security
problems related to input validation. Traditional dynamic
tainting approaches mark certain untrusted data (typically
user input) as tainted, track the flow of tainted data at
runtime, and prevent this data from being used in
potentially harmful ways. Our approach makes several
conceptual and practical improvements over traditional
dynamic tainting approaches by taking advantage of the
characteristics of SQLIAs and Web applications. First,
unlike existing dynamic tainting techniques, our approach
is based on the novel concept of positive tainting, that is, the
identification and marking of trusted, instead of untrusted,
data. Second, our approach performs accurate and efficient
taint propagation by precisely tracking trust markings at the
character level. Third, it performs syntax-aware evaluation of
query strings before they are sent to the database and blocks
all queries whose nonliteral parts (that is, SQL keywords
and operators) contain one or more characters without trust
markings. Finally, our approach has minimal deployment
requirements, which makes it both practical and portable.
The following sections discuss these key features of our
approach in detail.

3.1 P o siti v e T ai n ti n g
Positive tainting differs from traditional tainting (hereafter,
negative tainting) because it is based on the identification,
marking, and tracking of trusted, rather than untrusted,
data. This conceptual difference has significant implications
for the effectiveness of our approach in that it helps address
problems caused by incompleteness in the identification of
relevant data to be marked. Incompleteness, which is one of
the major challenges when implementing a security
technique based on dynamic tainting, has very different
consequences in negative and positive tainting. In the case
of negative tainting, incompleteness leads to trusting data
that should not be trusted and, ultimately, to false
negatives. Incompleteness may thus leave the application
vulnerable to attacks and can be very difficult to detect,
even after attacks actually occur, because they may go
completely unnoticed. With positive tainting, incomplete-
ness may lead to false positives, but it would never result in
an SQLIA escaping detection. Moreover, as explained in the
following, the false positives generated by our approach, if
any, are likely to be detected and easily eliminated early
during prerelease testing. Positive tainting uses a white-list,
rather than a black-list, policy and follows the general
principle of fail-safe defaults, as outlined by Saltzer and
Schroeder [25]: In case of incompleteness, positive tainting
fails in a way that maintains the security of the system.
Fig. 3 shows a graphical depiction of this fundamental
difference between negative and positive tainting.

In the context of preventing SQLIAs, the conceptual
advantages of positive tainting are especially significant.
The way in which Web applications create SQL commands
makes the identification of all untrusted data especially
problematic and,most importantly, the identification ofmost
trusted data relatively straightforward.Web applications are
deployed inmanydifferent configurations and interfacewith

a wide range of external systems. Therefore, there are often
many potential external untrusted sources of input to be
considered for these applications and enumerating all of
them is inherently difficult and error prone. For example,
developers initially assumed that only direct user input
needed to be marked as tainted. Subsequent exploits
demonstrated that additional input sources such as browser
cookies and uploaded files also needed to be considered.
However, accounting for these additional input sources did
not completely solve the problem either. Attackers soon
realized the possibility of leveraging local server variables
and the database itself as injection sources [1]. In general, it is
difficult toguarantee that all potentially harmful data sources
have been considered and even a single unidentified source
could leave the application vulnerable to attacks.

The situation is different for positive tainting because
identifying trusted data in a Web application is often
straightforward and always less error prone. In fact, in
most cases, strings hard-coded in the application by
developers represent the complete set of trusted data for a
Web application.1 This is because it is common practice for
developers to build SQL commands by combining hard-
coded strings that contain SQL keywords or operators with
user-provided numeric or string literals. For Web applica-
tions developed this way, our approach accurately and
automatically identifies all SQLIAs and generates no false
positives. Our basic approach, as explained in the following
sections, automatically marks as trusted all hard-coded
strings in the code and then ensures that all SQL keywords
and operators are built using trusted data.

In some cases, this basic approach is not enough because
developers can also use external query fragments—partial
SQL commands that come from external input sources—to
build queries. Because these string fragments are not hard-
coded in the application, they would not be part of the
initial set of trusted data identified by our approach and the
approach would generate false positives when the string
fragments are used in a query. To account for these cases,
our technique provides developers with a mechanism for
specifying sources of external data that should be trusted.
The data sources can be of various types such as files,
network connections, and server variables. Our approach
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uses this information to mark data that comes from these
additional sources as trusted.

In a typical scenario, we expect developers to specify
most of the trusted sources before testing and deployment.
However, some of these sources might be overlooked until
after a false positive is reported, in which case, developers
would add the omitted items to the list of trusted sources.
In this process, the set of trusted data sources monotonically
grows and eventually converges to a complete set that
produces no false positives. It is important to note that false
positives that occur after deployment would be due to the
use of external data sources that have never been used
during in-house testing. In other words, false positives are
likely to occur only for totally untested parts of applications.
Therefore, even when developers fail to completely identify
additional sources of trusted data beforehand, we expect
these sources to be identified during normal testing and the
set of trusted data to quickly converge to the complete set.

It is also worth noting that none of the subjects that we
collected and examined so far required us to specify
additional trusted data sources. All of these subjects used
only hard-coded strings to build query strings.

3.2 A c c urat e a n d E fficie n t T ai n t Pro p a g ati o n
T a int propagat ion consists of tracking taint markings
associated with the data while the data is used and
manipulated at runtime. When tainting is used for
security-related applications, it is especially important for
the propagation to be accurate. Inaccurate propagation can
undermine the effectiveness of a technique by associating
incorrect markings to data, which would cause the data to
be mishandled. In our approach, we provide a mechanism
to accurately mark and propagate taint information by
1) tracking taint markings at the “right” level of granularity
and 2) precisely accounting for the effect of functions that
operate on the tainted data.

Character-level tainting. We track taint information at the
character level rather than at the string level. We do this
because, for building SQL queries, strings are constantly
broken into substrings, manipulated, and combined. By
associating taint information to single characters, our
approach can precisely model the effect of these string
operations. Another alternative would be to trace taint data
at the bit level, which would allow us to account for
situations where string data are manipulated as character
values using bitwise operators. However, operating at the
bit level would make the approach considerably more
expensive and complex to implement and deploy. Most
importantly, our experience with Web applications shows
that working at a finer level of granularity than a character
would not yield any benefit in terms of effectiveness.
Strings are typically manipulated using methods provided
by string library classes and we have not encountered any
case of query strings that are manipulated at the bit level.

A ccounting for string manipulations. To accurately main-
tain character-level taint information, we must identify all
relevant string operations and account for their effect on the
taint markings (that is, we must enforce complete mediation
of all string operations). Our approach achieves this goal by
taking advantage of the encapsulation offered by object-
oriented languages, in particular by Java, in which all string

manipulations are performed using a small set of classes
and methods. Our approach extends all such classes and
methods by adding functionality to update taint markings
based on the methods’ semantics.

We discuss the language-specific details of our imple-
mentation of the taint markings and their propagation in
Section 4.

3.3 S y n t a x-A w ar e E v al u a ti o n
Aside from ensuring that taint markings are correctly
created and maintained during execution, our approach
must be able to use the taint markings to distinguish
legitimate from malicious queries. Simply forbidding the
use of untrusted data in SQL commands is not a viable
solution because it would flag any query that contains user
input as an SQLIA, leading to many false positives. To
address this shortcoming, researchers have introduced the
concept of declassification, which permits the use of tainted
input as long as it has been processed by a sanitizing
function. (A sanitizing function is typically a filter that
performs operations such as regular expression matching or
substring replacement.) The idea of declassification is based
on the assumption that sanitizing functions are able to
eliminate or neutralize harmful parts of the input and make
the data safe. However, in practice, there is no guarantee
that the checks performed by a sanitizing function are
adequate. Tainting approaches based on declassification
could therefore generate false negatives if they mark as
trusted supposedly sanitized data that is actually still
harmful. Moreover, these approaches may also generate
false positives in cases where unsanitized but perfectly legal
input is used within a query.

Syntax-aware evaluation does not rely on any (potentially
unsafe) assumptions about the effectiveness of sanitizing
functions used by developers. It also allows for the use of
untrusted inputdata in a SQL query as long as the use of such
data does not cause an SQLIA. The key feature of syntax-
aware evaluation is that it considers the context in which
trusted and untrusted data is used to make sure that all parts
of a query other than string or numeric literals (for example,
SQL keywords and operators) consist only of trusted
characters. As long as untrusted data is confined to literals,
we are guaranteed that no SQLIA can be performed.
Conversely, if this property is not satisfied (for example, if a
SQL operator contains characters that are not marked as
trusted),wecanassume that theoperatorhasbeen injectedby
an attacker and identify the query as an attack.

Our technique performs syntax-aware evaluation of a
query string immediately before the string is sent to the
database to be executed. To evaluate the query string, the
technique first uses a SQL parser to break the string into a
sequence of tokens that correspond to SQL keywords,
operators, and literals. The technique then iterates through
the tokens and checks whether tokens (that is, substrings)
other than literals contain only trusted data. If all such
tokens pass this check, the query is considered safe and is
allowed to execute. If an attack is detected, a developer-
specified action can be invoked. As discussed in Section 3.1,
this approach can also handle cases where developers use
external query fragments to build SQL commands. In these
cases, developers would specify which external data
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sources must be trusted, and our technique would mark
and treat data that comes from these sources accordingly.

This default approach, which 1) considers only two kinds
of data (trusted and untrusted) and 2) allows only trusted
data to form SQL keywords and operators, is adequate for
most Web applications. For example, it can handle applica-
tions where parts of a query are stored in external files or
database records that were created by the developers.
Nevertheless, to provide greater flexibility and support a
wide range of development practices, our technique also
allows developers to associate custom trust markings to
different data sources and provide custom trust policies that
specify the legal ways in which data with certain trust
markings can be used. Trust policies are functions that take as
input a sequence of SQL tokens and perform some type of
check based on the trustmarkings associatedwith the tokens.

BUGZILLA (http:/ /www.bugzilla.org) is an example of a
Web application for which developers might wish to specify
a custom trust marking and policy. In BUGZILLA, parts of
queries used within the application are retrieved from a
database when needed. Of particular concern to developers
in this scenario is the potential for second-order injection
attacks [1] (that is, attacks that inject into a database
malicious strings that result in an SQLIA only when they
are later retrieved and used to build SQL queries). In the
case of BUGZILLA, the only subqueries that should originate
in the database are specific predicates that form a query’s
WHERE clause. Using our technique, developers could first
create a custom trust marking and associate it with the
database’s data source. Then, they could define a custom
trust policy that specifies that data with such a custom trust
marking is legal only if it matches a specific pattern such as
ð i djseve r i t yÞ ¼0 nw þ 0 ððANDjORÞ ð i djseve r i t yÞ ¼0 nw þ 0Þ ? .

When applied to subqueries that originate in the
database, this policy would allow them to be used only to
build conditional clauses that involve the id or sever i ty
fields and whose parts are connected using the AND or OR
keywords.

3.4 Mi n im al D e p l o y m e n t R e q u ire m e n ts
Most existing approaches based on dynamic tainting
require the use of customized runtime systems and/or
impose a considerable overhead on the protected applica-
tions (see Section 6). In contrast, our approach has minimal
deployment requirements and is efficient, which makes it
practical for use in real settings. Our technique does not
necessitate a customized runtime system. It requires only
minor localized instrumentation of the application to
1) enable the use of our string library and 2) insert the calls
that perform syntax-aware evaluation of a query before it is
sent to the database. The protected application is then
deployed as a normal Web application except that the
deployment must include our string library. Both instru-
mentation and deployment are fully automated. We discuss
the deployment requirements and the overhead of the
approach in greater detail in Sections 4.5 and 5.3.

4 O U R IMP L E M E N T A TI O N : W A S P
To evaluate our approach, we developed a prototype tool
called WASP (Web Application SQL-injection Preventer),

which is written in Java and implements our technique for
Java-based Web applications. We target Java because it is
one of the most commonly used languages for Web
applications. (We discuss the applicability of the approach
in other contexts in Section 4.1.)

Fig. 4 shows the high-level architecture of WASP. As this
figure shows, WASP consists of a library (MetaStrings) and
two core modules (STRING INITIALIZER AND INSTRUMEN-
TER and STRING CHECKER). The MetaStrings library pro-
vides functionality for assigning trustmarkings to strings and
precisely propagating the markings at runtime. Module
STRING INITIALIZER AND INSTRUMENTER instruments Web
applications to enable the use of the MetaStrings library and
adds calls to the STRING CHECKER module. Module STRING
CHECKERperforms syntax-aware evaluation ofquery strings
right before the strings are sent to the database.

In the next sections, we discuss WASP’s modules in more
detail. We use the sample code introduced in Section 2 to
provide examples of various implementation aspects.

4.1 T h e Meta Stri n g s L i brar y
MetaStrings is our library of classes that mimic and extend
the behavior of Java’s standard string classes (that is,
Character, St r ing, St r ingBui lder, and St r ing
Buffer).2 For each string class C, MetaStrings provides a
“meta” version of the class MetaC, which has the same
functionality as C, but allows for associating metadata with
each character in a string and tracking the metadata as the
string is manipulated at runtime.

The MetaStrings library takes advantage of the object-
oriented features of the Java language to provide complete
mediation of string operations that could affect string
values and their associated trust markings. Encapsulation
and information hiding guarantee that the internal repre-
sentation of a string class is accessed only through the
class’s interface. Polymorphism and dynamic binding let us
add functionality to a string class by 1) creating a subclass
that overrides relevant methods of the original class and
2) replacing instantiations of the original class with
instantiations of the subclass. In our implementation, we
leverage theobject-oriented features of Java and the approach
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2. For simplicity, hereafter we use the term string to refer to all string-
related classes and objects in Java.

F ig. 4. H igh-level overview of the approach and tool.
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should be easily applicable to applications built using other
object-oriented languages such as .NET. Although the use of
object-oriented features allows our current implementation
to be elegant and minimally intrusive, we expect the
approach to be portable, with suitable engineering, to non-
object-oriented languages. For example, in C, the approach
couldbe implementedby identifying and instrumenting calls
to functions and operations that manipulate strings or
characters. In general, our approach should be portable to
all contexts where 1) string-creation and string-manipulation
operations can be identified and 2) a character-level taint
initialization and propagation mechanism can be implemen-
ted (either through instrumentation or by modifying the
runtime system).

To illustrate our MetaStrings library with an example,
Fig. 5 shows an intuitive view of the MetaStrings class
that corresponds to Java’s Str ing class. As this figure
shows, MetaStr ing extends class Str ing, has the same
internal representation, and provides the same methods.
MetaStr ing also contains additional data structures for
storing metadata and associating the metadata with char-
acters in the string. Each method of class MetaStr ing
overrides the corresponding method in Str ing, providing
the same functionality as the original method but also
updating the metadata based on the method’s semantics.
For example, a call to method substr ing(2, 4) on an
object str of class MetaStr ing would return a new
MetaStr ing that contains the second and third characters
of str and the corresponding metadata. In addition to the
overridden methods, MetaStrings classes also provide
methods for setting and querying the metadata associated
with a string’s characters.

The use of MetaStrings has the following benefits:

1. It allows for associating trust markings at the
granularity level of single characters.

2. It accurately maintains and propagates trust
markings.

3. It is completely defined at the application level and
thus does not require a customized runtime system.

4. Its usage requires only minimal and automatically
performed changes in the application’s bytecode.

5. It imposes a low execution overhead on Web
applications, as shown in Section 5.3.

The main limitations of the current implementation of
the MetaStrings library are related to the handling of
primitive types, native methods, and reflection. MetaStrings
cannot currently assign trust markings to primitive types,
so it cannot mark char values. Because we do not
instrument native methods, if a string class is passed as
an argument to a native method, the trust marking
associated with the string might not be correct after the
call. In the case of hard-coded strings created through
reflection (by invoking a string constructor by name), our
instrumenter for MetaStrings would not recognize the
constructors and would not change these instantiations to
instantiations of the corresponding metaclasses. However,
the MetaStrings library can handle most other uses of
reflection, such as invocation of string methods by name.

In practice, these limitations are of limited relevance
because they represent programming practices that are not
normally used to build SQL commands (for example,
representing strings by using primitive char values).
Moreover, during the instrumentation of a Web application,
we identify and report these potentially problematic
situations to the developers.

4.2 In itiali z ati o n o f Tru ste d Stri n g s
To implement positive tainting, WASP must be able to
identify and mark trusted strings. There are three categories
of strings that WASP must consider: hard-coded strings,
strings implicitly created by Java, and strings originating in
external sources. In the following sections, we explain how
strings from each category are identified and marked.

4.2.1 H ard-C oded S trings
The identification of hard-coded strings in an application’s
bytecode is fairly straightforward. In Java, hard-coded
strings are represented using Str ing objects that are
automatically created by the Java Virtual Machine (JVM)
when string literals are loaded onto the stack. (The JVM is a
stack-based interpreter.) Therefore, to identify hard-coded
strings, WASP simply scans the bytecode and identifies all
load instructions whose operand is a string constant. WASP
then instruments the code by adding, after each of these
load instructions, code that creates an instance of a
MetaStr ing class by using the hard-coded string as an
initialization parameter. Finally, because hard-coded strings
are completely trusted, WASP adds to the code a call to the
method of the newly created MetaStr ing object that
marks all characters as trusted. At runtime, polymorphism
and dynamic binding allow this instance of the MetaString
object to be used in any place where the original Str ing
object would have been used.

Fig. 6 shows an example of this bytecode transformation.
The Java code at the top of the figure corresponds to line 4
of our servlet example (see Fig. 2), which creates one of the
hard-coded strings in the servlet. Underneath, we show the
original bytecode (left column) and the modified bytecode
(right column). The modified bytecode contains additional
instructions that 1) load a new MetaStr ing object on the
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stack, 2) call the MetaStr ing constructor by using the
previous string as a parameter, and 3) call the method
markAl l , which assigns the given trust marking to all
characters in the string.

4.2.2 Implicitly Cre a ted S trings
In Java programs, the creation of some string objects is
implicitly added to the bytecode by the compiler. For
example, Java compilers typically translate the string
concatenation operator (“+”) into a sequence of calls to
the append method of a newly created Str ingBui lder
object. WASP must replace these string objects with their
corresponding MetaStrings objects so that they can main-
tain and propagate the trust markings of the strings on
which they operate. To do this, WASP scans the bytecode for
instructions that create new instances of the string classes
used to perform string manipulation and modifies each
such instruction so that it creates an instance of the
corresponding MetaStrings class instead. In this situation,
WASP does not associate any trust markings with the newly
created MetaStrings objects. These objects are not trusted
per se and they become marked only if the actual values
assigned to them during execution are marked.

Fig. 7 shows the instrumentation added by WASP for
implicitly created strings. The Java source code corresponds
to line 5 in our example servlet. The Str ingBui lder
object at offset 28 in the original bytecode is added by the
Java compiler when translating the string concatenation
operator (“+”). WASP replaces the instantiation at offset 28
with the instantiation of a MetaStr ingBui lder class and
then changes the subsequent invocation of the constructor

at offset 37 so that it matches the newly instantiated class.
Because MetaStr ingBui lder extends Str ingBui lder,
the subsequent calls to the append method invoke the
correct method in the MetaStr ingBui lder class.

4.2.3 S trings from E xterna l Source s
To use query fragments that come from external (trusted)
sources, developers must list these sources in a configura-
tion file that WASP processes before instrumenting the
application. The specified sources can be of different types
such as files (specified by name), network connections
(specified by host and port), and databases (specified by
database name, table, field, or combination thereof). For
each source, developers can either specify a custom trust
marking or use the default trust marking (the same used for
hard-coded strings). WASP uses the information in the
configuration file to instrument the external trusted sources
according to their type.

To illustrate this process, we describe the instrumenta-
tion that WASP performs for trusted strings that come from
a file. In the configuration file, the developer specifies the
name of the file (for example, foo. txt) as a trusted source
of strings. Based on this information, WASP scans the
bytecode for all instantiations of new file objects (that is,
Fi le, Fi leInputStream, and Fi leReader) and adds
instrumentation that checks the name of the file being
accessed. At runtime, if the name of the file matches the
name(s) specified by the developer (foo. txt in this case),
the file object is added to an internal list of currently trusted
file objects. WASP also instruments all calls to methods of
file-stream objects that return strings such as the Buffered
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F ig. 6. Instrumentation for hard-coded strings.
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Reader’s readLine method. At runtime, the added code
checks to see whether the object on which the method is
called is in the list of currently trusted file objects. If so, it
marks the generated strings with the trust marking
specified by the developer for the corresponding source.

We use a similar strategy to mark network connections.
In this case, instead of matching filenames at runtime, we
match hostnames and ports. The interaction with databases
is more complicated and requires WASP to not only match
the initiating connection but also trace tables and fields
through instantiations of the Statement and Resul tSet
objects created when querying the database.

Instrumentation optimization. Our current instrumentation
approach is conservative and may generate unnecessary
instrumentation. We could reduce the amount of instru-
mentation inserted in the code by leveraging static informa-
tion about the program. For example, data-flow analysis
could identify strings that are not involved with the
construction of query strings and therefore do not need to
be instrumented. A static analysis could also identify cases
where the filename associated with a file object is never one
of the developer-specified trusted filenames and avoid
instrumenting that object and subsequent operations on it.
Analogous optimizations could be implemented for other
external sources. We did not incorporate any of these
optimizations in the current tool because the overhead
imposed by our current (conservative) implementation was
insignificant in most of the cases.

4.3 H a n d li n g F als e P o sitiv e s
As discussed in Section 3, sources of trusted data that are
not specified by the developers beforehand would cause
WASP to generate false positives. To assist the developers in
identifying data sources that they initially overlooked,
WASP provides a special mode of operation, called the
“learning mode,” that would typically be used during in-
house testing. When in the learning mode, WASP adds an
additional unique taint marking to each string in the
application. Each marking consists of an ID that maps to
the fully qualified class name, method signature, and
bytecode offset of the instruction that instantiated the
corresponding string.

If WASP detects an SQLIA while in the learning mode, it
uses the markings associated with the untrusted SQL
keywords and operators in the query to report the
instantiation point of the corresponding string(s). If the
SQLIA is a false positive, knowing the position in the code
of the offending string(s) helps developers in correcting
omissions in the set of trusted inputs.

4.4 S y n t a x-A w ar e E v al u ati o n
The STRING CHECKER module performs syntax-aware
evaluation of query strings and is invoked right before the
strings are sent to the database. To add calls to the STRING
CHECKER module, WASP first identifies all of the database
interaction points, that is, points in the application where
query strings are issued to an underlying database. In Java,
all calls to the database are performed via specific methods
and classes in the JDBC library (http:/ / java.sun.com/
products/ jdbc/). Therefore, these points can be conserva-
tively identified through a simple matching of method
signatures. After identifying the database interaction points,
WASP inserts a call to the syntax-aware evaluation function

MetaChecker immediately before each interaction point.
MetaChecker takes as a parameter the MetaStrings object
that contains the query about to be executed.

When invoked, MetaChecker processes the SQL string
about to be sent to the database, as discussed in Section 3.3.
First, it tokenizes the string by using a SQL parser. Ideally,
WASP would use a database parser that recognizes the exact
same dialect of SQL that is used by the database. This
would guarantee that WASP interprets the query in the
same way as the database and would prevent attacks based
on alternate encodings [1] (see Section 2.1.6). Our current
implementation includes parsers for SQL-92 (ANSI) and
PostgreSQL and allows for adding other parsers in a
modular fashion. After tokenizing the query string, Meta
Checker enforces the default trust policy by iterating
through the tokens that correspond to keywords and
operators and examining their trust markings. If any of
these tokens contains characters that are not marked as
trusted, an attack is identified. When MetaChecker
identifies an attack, it can execute any developer-specified
action. In our evaluation, we configured WASP so that it
blocked the malicious query from executing and logged the
attempted attack.

If developers specify additional trust policies, Meta
Checker invokes the corresponding checking function(s) to
ensure that the query complies with them. In our current
implementation, trust policies are developer-defined func-
tions that take the list of SQL tokens as input, check them
based on their trust markings, and return a t rue or false
value, depending on the outcome of the check. Trust
policies can implement functionality that ranges from
simple pattern matching to sophisticated checks that use
externally supplied contextual information. If all custom
trust policies return a positive outcome, WASP allows the
query to be executed on the database. Otherwise, it
identifies the query as an SQLIA.

We illustrate how the default policy for syntax-aware
evaluation works by using our example servlet and the
legitimate and malicious query examples from Section 2. For
the servlet, there are no external sources of strings or
additional trust policies, so WASP onlymarks the hard-coded
strings as trusted and only the default trust policy is applied.
Fig. 8 shows the sequence of tokens in the legitimate query as
they would be parsed by MetaChecker. In this figure, SQL
keywords and operators are surrounded by boxes. The
figure also shows the trust markings associated with the
strings, where an underlined character is a character with
full trust markings. Because the default trust policy is that
all keyword and operator tokens must have originated in
trusted strings, MetaChecker simply checks whether all of
these tokens are comprised of trusted characters. The query
in Fig. 8 conforms to the trust policy and is thus allowed to
execute on the database.

Consider the malicious query, where the attacker
submits “admin’ – –” as the login and “0” as the pin.
Fig. 9 shows the sequence of tokens for the resulting query,
together with the trust markings. Recall that “– –” is the
SQL comment operator, so everything after this is identified
by the parser as a literal. In this case, the MetaChecker
would find that the last two tokens, ’ and   ,
contain untrusted characters. It would therefore identify the
query as an SQLIA.
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4.5 D e p l o y m e n t R e q u ire m e n ts
Using WASP to protect a Web application requires the
developer to run an instrumented version of the applica-
tion. There are two general implementation strategies that
we can follow for the instrumentation: offline and online.
Offline instrumentation statically instruments the applica-
tion and deploys the instrumented version of the applica-
tion. Online instrumentation deploys an unmodified
application and instruments the code at load time (that is,
when classes are loaded by the JVM). This latter option
allows for a great deal of flexibility and can be implemented
by leveraging the new instrumentation package introduced
in Java 5 (http:/ / java.sun.com/ j2se/1.5.0/). Unfortunately,
the current implementation of the Java 5 instrumentation
package is still incomplete and does not yet provide some
key features needed by WASP. In particular, it does not
allow for clearing the f inal flag in the string library
classes, which prevents the MetaStrings library from
extending them. Because of this limitation, for now, we
have chosen to rely on offline instrumentation and insert
into the Java library a version of the string classes in which
the f inal flag has been cleared.

Overall, the deployment requirements for our approach
are fairly lightweight. The modification of the Java library is
performed only once, in a fully automated way, and takes
just a few seconds. (Moreover, this modification is a
temporary workaround for the current limitations of Java’s
instrumentation package.) No modification of the JVM is
required. The instrumentation of a Web application is also
automatically performed. Given the original application,
WASP creates a deployment archive that contains the
instrumented application, the MetaStrings library, and the
string checker module. At this point, the archive can be
deployed like any other Web application. WASP can
therefore be easily and transparently incorporated into an
existing build process.

5 E MPIRIC A L E V A L U A TI O N

In our evaluation, we assessed the effectiveness and
efficiency of our approach. To do this, we used WASP to
protect several real vulnerable Web applications while
subjecting them to a large number of attacks and legitimate
accesses and investigated three research questions:

. RQ1. What percentage of attacks can WASP detect
and prevent that would otherwise go undetected
and reach the database?

. RQ2. What percentage of legitimate accesses are
incorrectly identified by WASP as attacks?

. RQ3. What is the runtime overhead imposed by
WASP on the Web applications that it protects?

The first two questions deal with the effectiveness of the
technique: RQ1 investigates the false-negative rate of the

technique and RQ2 investigates the false-positive rate. RQ3
deals with the efficiency of the proposed technique. The next
sections discuss our experiment setup, protocol, and results.

5.1 E x p erim e n t S et u p
The framework that we use for our experiments consists of
a set of vulnerable Web applications, a large set of test
inputs that contain both legitimate accesses and SQLIAs,
and monitoring and logging tools. We developed the initial
framework in our previous work [11] and it has since been
used both by us and by other researchers [10], [27]. In this
study, we have expanded the framework by 1) including
additional open source Web applications with known
vulnerabilities, 2) generating legitimate and malicious
inputs for these new applications, and 3) expanding the
set of inputs for the existing applications. In the next two
sections, we discuss the Web applications and the set of
inputs used in our experiments in more detail.

5.1.1 Software Subjects
Our set of software subjects consists of 10 Web applica-
tions that are known to be vulnerable to SQLIAs. Five of
the applications are commercial applications that we
obtained from GotoCode (http:/ /www.gotocode.com/):
Employee Directory, Bookstore, Events, Classifieds, and
Portal. Two applications, OfficeTalk and Checkers, are
student-developed applications that have been used in a
related work [8]. Two other applications, Daffodil and
Filelister, are open source applications that have been
identified in the Open Source Vulnerability Database
(http:/ /osvdb.org/ , entries 22879 and 21416) as containing
one or more SQL injection vulnerabilities. The last subject,
WebGoat, is a purposely insecure Web application that was
developed by the Open Web Application Security Project
(http:/ /www.owasp.org/) to demonstrate common Web
application vulnerabilities. Among these 10 subjects, the
first seven applications contain a wide range of vulner-
abilities, whereas the last three contain specific and known
SQLIA vulnerabilities.

Table 1 provides summary information about each of the
subjects in our evaluation. It shows, for each subject, its size
(L O C), number of database interaction points (D BIs),
number of vulnerable servlets (V uln Servlets), and total
number of servlets (Total Servlets). We considered all of the
servlets in the first seven subjects that accepted user input
to be potentially vulnerable because we had no initial
information about their vulnerabilities. For the remaining
three applications, we considered as vulnerable only those
servlets with specific and known vulnerabilities.

5.1.2 Ma licious and Legitima te Inputs
For each of the Web applications considered,we created two
sets of inputs: LE GI T, which consists of legitimate inputs for
the application, and A T T A C K, which consists of SQLIAs.
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F ig. 8. E xample query 1 after parsing by the runtime monitor.

F ig. 9. E xample query 2 after parsing by the runtime monitor.
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To create the A T T A C K sets, we employed a Master’s level
student with experience in developing commercial penetra-
tion testing tools. The student first assembled a list of actual
SQLIAs by surveying different sources: exploits developed
by professional penetration-testing teams to take advantage
of SQL-injection vulnerabilities, online vulnerability reports
such as US-CERT (http:/ /www.us-cert.gov/) and CERT/
CC Advisories (http:/ /www.cert.org/advisories/ ), and
information extracted from several security-related mailing
lists. The resulting set of attack strings contained 24 unique
attacks. All types of attacks reported in the literature [12]
were represented in this set, except for multiphase attacks
such as second-order injections. Since multiphase attacks
require human intervention and interpretation, we omitted
them to keep our testbed fully automated. These attack
strings were then used to build inputs for all of the
vulnerable servlets in each application. The resulting
ATTACK sets contained a broad range of potential SQLIAs.

The LEGIT sets were created in a similar fashion.
However, instead of using attack strings to generate sets
of inputs, the student used legitimate values. To create
“interesting” legitimate values, we asked the student to
generate input strings that, although legal, would stress and
possibly break naive SQLIA detection techniques (for
example, techniques based on simple identification of
keywords or special characters in the input). For instance,
the legitimates values contained SQL keywords (for exam-
ple, “SELECT” and “DROP”), query fragments (for example,
“o r 1 ¼ 1”), and properly escaped SQL operators (for
example, the single quote ’ ’ and the percent sign n%).
These values were used to build inputs for the vulnerable
servlets that looked “suspicious” without actually resulting
in an SQLIA.

5.2 E x p erim e n ta l Pro t o c o l
RQ1 addresses the issue of false negatives. To investigate
this question, we 1) ran the inputs in the ATTACK sets
against our subject applications and 2) tracked the result of
each attack to check whether it was detected and prevented
by WASP. The results of this evaluation are shown in
Table 2. The second column reports the total number of
attacks in the application’s A T T A C K set. The next two
columns show the number of attacks that were successful
against the original unprotected Web application and the
number of attacks that were successful on the application

protected using WASP. The reason that some attacks were
not successful on the unprotected applications is twofold.
First, not all of the 24 attack strings represented viable
attacks against all vulnerable servlets. Second, many of the
applications performed some type of input validation that
could catch and prevent a subset of the attempted attacks.

RQ2 deals with false positives. To address this question,
we ran all of the test inputs in each application’s LE GI T set
against the application. As before, we tracked the result of
each of these legitimate accesses to see if WASP reported it
as an attack, which would be a false positive. The results for
this evaluation are summarized in Table 3. The table shows
the number of legitimate accesses that WASP allows to
execute (# Legitimate A ccesses) and the number of accesses
blocked by WASP (False Positives).

To address RQ3, we measured the overhead incurred by
applications that were protected using WASP. To do this, we
measured and compared the times needed to run the LEGIT
set against a protected version and an unprotected version
of each application. We used only the LEGIT set for this part
of the study because our current implementation of WASP
terminates the execution when it detects an attack, which
would have made the total execution time for the WASP-
protected version faster than the time for the normal
version. To reduce problems with the precision of the
timing measurements, we measured the total time that it
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took to run the entire LEGIT set against an application,
instead of the single times for each input in the set, and
divided this time by the number of accesses to get an
average value. In addition, to account for possible external
factors beyond our control, such as network traffic or other
OS activities, we repeated these measurements 100 times for
each application and averaged the results. All measure-
ments were performed on two machines that act as client
and server. The client was a 2.4 GHz Pentium 4 with
1 Gbyte memory, running GNU/Linux 2.4. The server was
a 3.0 GHz dual-processor Pentium D with 2 Gbyte memory,
running GNU/Linux 2.6.

In addition to measuring the overhead for these macro
benchmarks, we also measured the overhead imposed by
individual MetaStrings methods on a set of micro bench-
marks. To do this, we first identified the methods most
commonly used in the subject Web applications, seven
methods overall. We then measured, for each method m,
the runtime of 1) a driver that performed 10,000 calls to the
original m and 2) a driver that performed the same number

of calls to the MetaStrings version of m. In addition, in this
case, we performed the measurements 100 times and
averaged the results. This second set of measurements
was also performed on a 3.0 GHz dual-processor Pentium D
with 2 Gbyte memory, running GNU/Linux 2.6.

Table 4 shows the results of the timing measurements for
the macro benchmarks. For each subject, the table reports the
number of inputs in theLEGIT set (# Inputs), the average time
per access for the uninstrumentedWeb application (A vg T ime
U ninst), the average time overhead per access for the
instrumented version (A vg O verhead), and the average time
overhead as a percentage (% O verhead). In the table, all
absolute times are expressed inmilliseconds. Fig. 10provides
another view of the timing measurements by using a bar
chart. In this figure, the total servlet access times for the
instrumented and uninstrumented versions are shown side
by side. As the figure shows, the difference between the two
bars for a subject, which represents the WASP overhead, is
small in both relative and absolute terms.

Table 5 reports the results of the timing measurements
for the micro benchmarks. For each of the seven methods
considered, the table shows the average runtime, in
milliseconds, for 10,000 executions of the original method
and of its M etaStrings version. Note that the measured
overhead is due to either the creation and initialization of a
new Set object for each character (for the default con-
structors) or the copying of the trust markings from one
object to another (for the parameterized constructors and
for the methods append and concat ). Although the
measured overhead is considerable in relative terms, it is
mostly negligible in absolute terms. In the worst case, for
method St r ingBui lder .Append(St r ingBui lder) ,
the MetaStrings version of the method takes 71 ms more
than its original version for 10,000 executions.

5.3 Dis c u s si o n o f t h e E x p erim e n ta l R e s u lts
The results of our evaluation show that, overall, WASP is
an effective technique for preventing SQLIAs. In our

14 I E E E T R A N S A C TI O N S O N S O F T W A R E E N G IN E E RIN G , V O L. 34, N O . 1, JA N U A R Y/ F E B R U A R Y 2008

T A BL E 4
O verhe ad Me asurements for the Macro B enchmarks (R Q 3)

F ig. 10. Runtime overhe ad imposed by W A S P ’s instrumenta tion on the subject W eb applica tions.

24



evaluation, WASP was able to correctly identify all
SQLIAs while generating no false positives. In total,
WASP stopped 12,826 viable SQLIAs without preventing
any of the 13,166 legitimate accesses from executing.

The overhead imposed by WASP was also relatively low.
For the 10 applications, the average overhead was about
8 ms (5.5 percent). For most Web applications, this cost is
low enough that it would be dominated by the cost of the
network and database accesses. Furthermore, we believe
that, by using some of the optimizations discussed in
Section 4.2.3, it would be possible to lower this number
even further, if deemed necessary, after performing more
experimentation. Portal, the application that incurred the
highest overhead, is an example of an application that
would benefit enormously from these optimizations. Portal
generates a large number of string-based lookup tables.
Although these strings are not used to build queries, WASP
associates trust markings with them and propagates these
markings at runtime. In this specific case, a simple
dependency analysis would be able to determine that these
markings are unnecessary and avoid the overhead asso-
ciated with these operations.

Like all empirical studies, our evaluation has limitations
thatmay affect the external and internal validity of its results.
Theprimary threat to the external validityof the results is that
the attacks and applications used in our studies may not be
representative of real-world applications and attacks. To
mitigate this issue, we have included in our set of subjects
Web applications that come from a number of different
sources and were developed using different approaches (for
example, the fiveGotoCodeapplications aredevelopedusing
an approach that is based on automated code generation). In
addition,our setofattackswas independentlydevelopedbya
Master’s level studentwho had considerable experiencewith
SQLIAs andpenetration testing butwasnot familiarwith our
technique. Finally, the attack strings used by the student as a
basis for the generation of the attacks were based on real-
world SQLIAs.

For this study, threats to internal validity mainly concern
errors in our implementation or in our measurement tools
that could affect outcomes. To control these threats, we
validated the implementations and tools on small-scale
examples and performed a considerable amount of spot
checking for some of the individual results.

6 R E L A T E D W O R K

The use of dynamic tainting to prevent SQLIAs has been
investigated by several researchers. The two approaches
most similar to ours are those by Nguyen-Tuong et al. [23]
and Pietraszek and Berghe [24]. Similarly, we track taint
information at the character level and use a syntax-aware
evaluation to examine tainted input. However, our ap-
proach differs from theirs in several important aspects.
First, our approach is based on the novel concept of positive
tainting, which is an inherently safer way of identifying
trusted data (see Section 3.1). Second, we improve on the
idea of syntax-aware evaluation by 1) using a database
parser to interpret the query string before it is executed,
thereby ensuring that our approach can handle attacks
based on alternate encodings, and 2) providing a flexible
mechanism that allows different trust policies to be
associated with different input sources. Finally, a practical
advantage of our approach is that it has more lightweight
deployment requirements. Their approaches require the use
of a customized PHP runtime interpreter, which adversely
affects the portability of the approaches.

Other dynamic tainting approaches more loosely related
to our approach are those byHaldar et al. [9] andMartin et al.
[20]. Although they also propose dynamic tainting ap-
proaches for Java-based applications, their techniques sig-
nificantly differ from ours. First, they track taint information
at the level of granularity of strings, which introduces
imprecision in modeling string operations. Second, they use
declassification rules, instead of syntax-aware evaluation, to
assesswhether a query string contains an attack.Declassifica-
tion rules assume that sanitizing functions are always
effective, which is an unsafe assumption and may leave the
application vulnerable to attacks. In many cases, attack
strings can pass through sanitizing functions and may still
be harmful. Another dynamic tainting approach, proposed
by Newsome and Song [22], focuses on tainting at a level that
is too low to be used fordetecting SQLIAs andhas a very high
execution overhead. Xu et al. [31] propose a generalized
tainting mechanism that can address a wide range of input-
validation-related attacks, targets C programs, and works by
instrumenting the code at the source level. Their approach
can be considered a framework for performing dynamic taint
analysis on C programs. As such, it could be leveraged to
implement a version of our approach for C-based Web
applications.

Researchers also proposed dynamic techniques against
SQLIAs that do not rely on tainting. These techniques
include Intrusion Detection Systems (IDSs) and automated
penetration testing tools. Scott and Sharp propose Security
Gateway [26], which uses developer-provided rules to filter
Web traffic, identify attacks, and apply preventive trans-
formations to potentially malicious inputs. The success of
this approach depends on the ability of developers to write
accurate and meaningful filtering rules. Similarly, Valeur
et al. [28] developed an IDS that uses machine learning to
distinguish legitimate and malicious queries. Their ap-
proach, like most learning-based techniques, is limited by
the quality of the IDS training set. Machine learning was
also used in WAVES [14], an automated penetration testing
tool that probes Web sites for vulnerability to SQLIAs. Like
all testing tools, WAVES cannot provide any guarantees of
completeness. SQLrand [2] appends a random token to SQL
keywords and operators in the application code. A proxy
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server then checks to make sure that all keywords and
operators contain this token before sending the query to the
database. Because the SQL keywords and operators injected
by an attacker would not contain this token, they would be
easily recognized as attacks. The drawbacks of this
approach are that the secret token could be guessed, thus
making the approach ineffective, and that the approach
requires the deployment of a special proxy server.

Model-based approaches against SQLIAs include
AMNESIA [11], SQL-Check [27], and SQLGuard [3].
AMNESIA, previously developed by two of the authors,
combines static analysis and runtime monitoring to detect
SQLIAs. The approach uses static analysis to build models
of the different types of queries that an application can
generate and dynamic analysis to intercept and check the
query strings generated at runtime against the model.
Queries that do not match the model are identified as
SQLIAs. A problem with this approach is that it is
dependent on the precision and efficiency of its underlying
static analysis, which may not scale to large applications.
Our new technique takes a purely dynamic approach to
preventing SQLIAs, thereby eliminating scalability and
precision problems. SQLCheck [27] identifies SQLIAs by
using an augmented grammar and distinguishing un-
trusted inputs from the rest of the strings by means of a
marking mechanism. The main weakness of this approach
is that it requires the manual intervention of the developer
to identify and annotate untrusted sources of input, which
introduces incompleteness problems and may lead to false
negatives. Our use of positive tainting eliminates this
problem while providing similar guarantees in terms of
effectiveness. SQLGuard [3] is an approach similar to
SQLCheck. The main difference is that SQLGuard builds
its models on the fly by requiring developers to call a
special function and to pass to the function the query string
before user input is added.

Other approaches against SQLIAs rely purely on static
analysis [15], [16], [17], [18], [30]. These approaches scan the
application and leverage information flow analysis or
heuristics to detect code that could be vulnerable to SQLIAs.
Because of the inherently imprecise nature of the static
analysis that they use, these techniques can generate false
positives. Moreover, since they rely on declassification rules
to transform untrusted input into safe input, they can also
generate false negatives. Wassermann and Su propose a
technique [29] that combines static analysis and automated
reasoning to detect whether an application can generate
queries that contain tautologies. This technique is limited, by
definition, in the types of SQLIAs that it can detect.

Finally, researchers have investigated ways to statically
eliminate vulnerabilities from the code of a Web applica-
tion. Defensive coding best practices [13] have been
proposed as a possible approach, but they have limited
effectiveness because they rely almost exclusively on the
ability and training of developers. Moreover, there are
many well-known ways to evade some defensive-coding
practices, including “pseudoremedies” such as stored
procedures and prepared statements (for example, [1],
[13], [19]). Researchers have also developed special libraries
that can be used to safely create SQL queries [5], [21]. These
approaches, although highly effective, require developers to
learn new APIs, can be very expensive to apply on legacy
code, and sometimes limit the expressiveness of SQL.

Finally, JDBC-Checker [7], [8] is a static analysis tool that
detects potential type mismatches in dynamically generated
queries. Although it was not intended to prevent SQLIAs,
JDBC-Checker can be effective against SQLIAs that leverage
vulnerabilities due to type mismatches, but will not be able
to prevent other kinds of SQLIAs.

7 C O N C L U SI O N

This paper presented a novel highly automated approach
for protecting Web applications from SQLIAs. Our ap-
proach consists of 1) identifying trusted data sources and
marking data coming from these sources as trusted, 2) using
dynamic tainting to track trusted data at runtime, and
3) allowing only trusted data to form the semantically
relevant parts of queries such as SQL keywords and
operators. Unlike previous approaches based on dynamic
tainting, our technique is based on positive tainting, which
explicitly identifies trusted (rather than untrusted) data in a
program. This way, we eliminate the problem of false
negatives that may result from the incomplete identification
of all untrusted data sources. False positives, although
possible in some cases, can typically be easily eliminated
during testing. Our approach also provides practical
advantages over the many existing techniques whose
application requires customized and complex runtime
environments: It is defined at the application level, requires
no modification of the runtime system, and imposes a low
execution overhead.

We have evaluated our approach by developing a
prototype tool WASP and using the tool to protect
10 applications when subjected to a large and varied set
of attacks and legitimate accesses. WASP successfully and
efficiently stopped over 12,000 attacks without generating
any false positives. Both our tool and the experimental
infrastructure are available to other researchers.

We have two immediate goals for future work. First, we
will extendour experimental resultsbyusingWASP toprotect
actually deployed Web applications.Our first target will be a
set of Web applications that run at Georgia Tech. This will
allow us to assess the effectiveness of WASP in real settings
and also to collect a valuable set of real legal accesses and,
possibly,attacks. Second,wewill implement theapproach for
binary applications. We have already started developing the
infrastructure to perform tainting at the binary level and
developed a proof-of-concept prototype [4].
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ABSTRACT
SQ L injection attacks pose a serious threat to the security of Web
applications because they can give attackers unrestricted access to
databases that contain sensitive information. In this paper, we pro-
pose a new, highly automated approach for protecting existing Web
applications against SQ L injection. Our approach has both concep-
tual and practical advantages over most existing techniques. From
the conceptual standpoint, the approach is based on the novel idea
of positive tainting and the concept of syntax-aware evaluation.
From the practical standpoint, our technique is at the same time pre-
cise and efficient and has minimal deployment requirements. The
paper also describes WA SP, a tool that implements our technique,
and a set of studies performed to evaluate our approach. In the stud-
ies, we used our tool to protect several Web applications and then
subjected them to a large and varied set of attacks and legitimate
accesses. The evaluation was a complete success: WA SP success-
fully and efficiently stopped all of the attacks without generating
any false positives.

Categories and Subject Descriptors: D.2.0 [Software Engineer-
ing]: General—Protection mechanisms;

General Terms: Security

Keywords: SQ L injection, dynamic tainting, runtime monitoring

1. INTRODUCTION
SQ L injection attacks (SQ LI A s) are one of the major security

threats for Web applications [5]. Successful SQ LI A s can give at-
tackers access to and even control of the databases that underly
Web applications, which may contain sensitive or confidential in-
formation. Despite the potential severity of SQ LI A s, many Web
applications remain vulnerable to such attacks.

In general, SQ L injection vulnerabilities are caused by inade-
quate input validation within an application. A ttackers take ad-
vantage of these vulnerabilities by submitting input strings that
contain specially-encoded database commands to the application.
When the application builds a query using these strings and sub-
mits the query to its underlying database, the attacker’s embedded
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SIGSO F T’06/F SE-14, November 5–11, 2006, Portland, Oregon, USA .
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commands are executed by the database, and the attack succeeds.
A lthough this general mechanism is well understood, straightfor-
ward solutions based on defensive coding practices have been less
than successful for several reasons. F irst, it is difficult to imple-
ment and enforce a rigorous defensive coding discipline. Second,
many solutions based on defensive coding address only a subset
of the possible attacks. F inally, defensive coding is problematic
in the case of legacy software because of the cost and complex-
ity of retrofitting existing code. Researchers have proposed a wide
range of alternative techniques to address SQ LI A s, but many of
these solutions have limitations that affect their effectiveness and
practicality.

In this paper we propose a new, highly automated approach for
dynamic detection and prevention of SQ LI A s. Intuitively, our ap-
proach works by identifying “trusted” strings in an application and
allowing only these trusted strings to be used to create certain parts
of an SQ L query, such as keywords or operators. The general mech-
anism that we use to implement this approach is based on dynamic
tainting, which marks and tracks certain data in a program at run-
time.

The kind of dynamic tainting we use gives our approach several
important advantages over techniques based on different mecha-
nisms. Many techniques rely on complex static analyses in order to
find potential vulnerabilities in code (e.g., [9, 15, 26]). These kinds
of conservative static analyses can generate high rates of false posi-
tives or may have scalability issues when applied to large, complex
applications. Our approach does not rely on complex static anal-
yses and is very efficient and precise. Other techniques involve
extensive human effort (e.g., [4, 18, 24]). They require developers
to manually rewrite parts of their applications, build queries using
special libraries, or mark all points in the code at which malicious
input could be introduced. In contrast, our approach is highly auto-
mated and in most cases requires minimal or no developer interven-
tion. Lastly, several proposed techniques require the deployment of
extensive infrastructure or involve complex configurations (e.g., [2,
23, 25]). Our approach does not require additional infrastructure
and can be deployed automatically.

Compared to other existing techniques based on dynamic taint-
ing (e.g., [8, 20, 21]), our approach makes several conceptual and
practical improvements that take advantage of the specific char-
acteristics of SQ LI A s. The first conceptual advantage of our ap-
proach is the use of positive tainting. Positive tainting identifies
and tracks trusted data, whereas traditional (“negative”) tainting fo-
cuses on untrusted data. In the context of SQ LI A s, there are sev-
eral reasons why positive tainting is more effective than negative
tainting. F irst, in Web applications, trusted data sources can be
more easily and accurately identified than untrusted data sources;
therefore, the use of positive tainting leads to increased automation.
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Second, the two approaches differ significantly in how they are af-
fected by incompleteness. With negative tainting, failure to identify
the complete set of untrusted data sources would result in false neg-
atives, that is, successful undetected attacks. With positive tainting,
conversely, missing trusted data sources would result in false pos-
itives, which are undesirable, but whose presence can be detected
immediately and easily corrected. In fact, we expect that most false
positives would be detected during pre-release testing. The second
conceptual advantage of our approach is the use of flexible syntax-
aware evaluation, which gives developers a mechanism to regulate
the usage of string data based not only on its source, but also on its
syntactical role in a query string. In this way, developers can use
a wide range of external input sources to build queries, while pro-
tecting the application from possible attacks introduced via these
sources.

The practical advantages of our approach are that it imposes a
low overhead on the application and has minimal deployment re-
quirements. E fficiency is achieved by using a specialized library,
called MetaStrings, that accurately and efficiently assigns and tracks
trust markings at runtime. The only deployment requirements for
our approach are that the Web application must be instrumented
and deployed with our MetaStrings library, which is done auto-
matically. The approach does not require any customized runtime
system or additional infrastructure.

In this paper, we also present the results of an extensive empiri-
cal evaluation of the effectiveness and efficiency of our technique.
To perform this evaluation, we implemented our approach in a tool
called WA SP (Web A pplication SQ L-injection Preventer) and eval-
uated WA SP on a set of seven Web applications of various types and
sizes. For each application, we protected it with WA SP, targeted it
with a large set of attacks and legitimate accesses, and assessed the
ability of our technique to detect and prevent attacks without stop-
ping legitimate accesses. The results of the evaluation are promis-
ing; our technique was able to stop all of the attacks without gener-
ating false positives for any of the legitimate accesses. Moreover,
our technique proved to be efficient, imposing only a low overhead
on the Web applications.
The main contributions of this work are:

• A new, automated technique for preventing SQ LI A s based on
the novel concept of positive tainting and on flexible syntax-
aware evaluation.

• A mechanism to perform efficient dynamic tainting of Java
strings that precisely propagates trust markings while strings
are manipulated at runtime.

• A tool that implements our SQ LI A prevention technique for
Java-based Web applications and has minimal deployment
requirements.

• A n empirical evaluation of the technique that shows its ef-
fectiveness and efficiency.

The rest of this paper is organized as follows. In Section 2, we
introduce SQ LI A s with an example that is used throughout the pa-
per. Sections 3 and 4 discuss the approach and its implementation.
Section 5 presents the results of our evaluation. We discuss related
work in Section 6 and conclude in Section 7.

2. SQ L INJECTION ATTAC KS
Intuitively, an SQ L Injection A ttack (SQ LI A ) occurs when an

attacker changes the developer’s intended structure of an SQ L com-
mand by inserting new SQ L keywords or operators. (Su and Wasser-
mann provide a formal definition of SQ LI A s in [24].) SQ LI A s
leverage a wide range of mechanisms and input channels to inject

1 . S t r i n g l o g i n = g e t P a r ame t e r ( " l o g i n " ) ;
2 . S t r i n g p i n = g e t P a r a me t e r ( " p i n " ) ;
3 . S t a t eme n t s t m t = c o n n e c t i o n . c r e a t e S t a t eme n t ( ) ;
4 . S t r i n g q u e r y = " SE L ECT a c c t FROM u s e r s WHERE l o g i n = ’ " ;
5 . q u e r y + = l o g i n + " ’ AND p i n = " + p i n ;
6 . Re s u l t S e t r e s u l t = s t m t . e x e c u t eQu e r y ( q u e r y ) ;
7 . i f ( r e s u l t ! = n u l l )
8 . d i s p l a y A c c o u n t ( r e s u l t ) ; / / Sh ow a c c o u n t
9 . e l s e
1 0 . s e n dAu t h F a i l e d ( ) ; / / Au t h e n t i c a t i o n f a i l e d

Figure 1: Excerpt of a Java servlet implementation.

malicious commands into a vulnerable application [10]. In this sec-
tion we introduce an example application that contains an SQ L in-
jection vulnerability and show how an attacker can leverage the vul-
nerability to perform an SQ LI A . Note that the example represents
an extremely simple kind of attack, and we present it for illustra-
tive purposes only. Interested readers may refer to References [1]
and [10] for further examples of the different types of SQ LI A s.

The code excerpt in F igure 1 represents the implementation of lo-
gin functionality that we can find in a typical Web application. This
type of login function would commonly be part of a Java servlet, a
type of Java application that runs on a Web application server, and
whose execution is triggered by the submission of a U RL from a
user of the Web application. The servlet in the example uses the
input parameters l o g i n and p i n to dynamically build an SQ L
query or command.1 The l o g i n and p i n are checked against the
credentials stored in the database. If they match, the correspond-
ing user’s account information is returned. Otherwise, a null set is
returned by the database and the authentication fails. The servlet
then uses the response from the database to generate H T M L pages
that are sent back to the user’s browser by the the Web server.

G iven the servlet code, if a user submits l o g i n and p i n as
“ d o e ” and “ 1 2 3,” the application dynamically builds the query:

SE L ECT a c c t FROM u s e r s WHERE l o g i n = ’ d o e ’ AND p i n = 1 2 3

If l o g i n and p i n match the corresponding entry in the database,
d o e ’s account information is returned and then displayed by func-
tion d i s p l a y A c c o u n t ( ) . If there is no match in the database,
function s e n dAu t h F a i l e d ( ) displays an appropriate error mes-
sage. A n application that uses this servlet is vulnerable to SQ LI A s.
For example, if an attacker enters “ a dm i n ’ - - ” as the user name
and any value as the pin (e.g., “ 0 ”), the resulting query is:

SE L ECT a c c t FROM u s e r s WHERE l o g i n = ’ a dm i n ’ - - ’ AND p i n = 0

In SQ L, “ - - ” is the comment operator, and everything after it is
ignored. Therefore, when performing this query, the database sim-
ply searches for an entry where l o g i n is equal to a dm i n and
returns that database record. A fter the “successful” login, the func-
tion d i s p l a y A c c o u n t ( ) would therefore reveal the a dm i n ’s
account information to the attacker.

3. OUR APPROACH
Our approach is based on dynamic tainting, which has been widely

used to address security problems related to input validation. Tra-
ditional dynamic tainting approaches mark certain untrusted data
(typically, user input) as tainted, track the flow of tainted data at
runtime, and prevent this data from being used in potentially harm-
ful ways. Our approach makes several conceptual and practical im-
provements over traditional dynamic-tainting approaches by tak-
ing advantage of the characteristics of SQ LI A s. F irst, unlike any
existing dynamic tainting techniques that we are aware of, our ap-

1 For simplicity, in the rest of this paper we use the terms query and
command interchangeably.
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proach is based on the novel concept of positive tainting—the iden-
tification and marking of trusted instead of untrusted data. Sec-
ond, our approach performs accurate taint propagation by pre-
cisely tracking trust markings at the character level. Third, it per-
forms syntax-aware evaluation of query strings before they are sent
to the database and blocks all queries whose non-literal parts (i.e.,
SQ L keywords and operators) contain one or more characters with-
out trust markings. F inally, our approach has minimal deployment
requirements, which makes it both practical and portable. The fol-
lowing sections discuss the key features of our approach in detail.

3.1 Positive Tainting
Positive tainting differs from traditional tainting (hereafter, neg-

ative tainting) because it is based on the identification, marking,
and tracking of trusted, rather than untrusted, data. This concep-
tual difference has significant implications for the effectiveness of
our approach, in that it helps address problems caused by incom-
pleteness in the identification of relevant data to be marked. Incom-
pleteness, which is one of the major challenges when implementing
a security technique based on dynamic tainting, has very different
consequences in negative and positive tainting. In the case of neg-
ative tainting, incompleteness leads to trusting data that should not
be trusted and, ultimately, to false negatives. Incompleteness may
thus leave the application vulnerable to attacks and can be very
difficult to detect even after attacks occur. With positive tainting,
incompleteness may lead to false positives, but never results in an
SQ LI A escaping detection. Moreover, as explained below, the false
positives generated by our approach are likely to be detected and
easily eliminated early, during pre-release testing. Positive taint-
ing follows the general principle of fail-safe defaults as outlined by
Saltzer and Schroeder in [22]: in case of incompleteness, positive
tainting fails in a way that maintains the security of the system.

In the context of preventing SQ LI A s, these conceptual advan-
tages of positive tainting are especially significant. The way in
which Web applications create SQ L commands makes the iden-
tification of all untrusted data especially problematic and, most im-
portantly, the identification of all trusted data relatively straightfor-
ward. Web applications are deployed in many different configura-
tions and interface with a wide range of external systems. There-
fore, there are often many potential external untrusted sources of
input to be considered for these applications, and enumerating all
of them is inherently difficult and error-prone. For example, de-
velopers initially assumed that only direct user input needed to be
marked as tainted. Subsequent exploits demonstrated that addi-
tional input sources, such as browser cookies and uploaded files,
also needed to be considered. However, accounting for these ad-
ditional input sources did not completely solve the problem either.
A ttackers soon realized the possibility of leveraging local server
variables and the database itself as injection sources [1]. In general,
it is difficult to guarantee that all potentially harmful data sources
have been considered, and even a single unidentified source could
leave the application vulnerable to attacks.

The situation is different for positive tainting because identifying
trusted data in a Web application is often straightforward, and al-
ways less error prone. In fact, in most cases, strings hard-coded in
the application by developers represent the complete set of trusted
data for a Web application.2 The reason for this is that it is com-
mon practice for developers to build SQ L commands by combining
hard-coded strings that contain SQ L keywords or operators with
user-provided numeric or string literals. For Web applications de-
2 We assume that developers are trustworthy. A n attack encoded by
a developer would not be an SQ LI A but a form of back-door attack,
which is not the problem addressed in this paper.

veloped in this way, which includes the applications used in our
empirical evaluation, our approach accurately and automatically
identifies all SQ LI A s and generates no false positives; our basic ap-
proach, as explained in the following sections, automatically marks
as trusted all hard-coded strings in the code and then ensures that
all SQ L keywords and operators are built using trusted data.

In some cases, this basic approach is not enough because de-
velopers can also use external query fragments—partial SQ L com-
mands coming from external input sources—to build queries. Be-
cause these string fragments are not hard-coded in the application,
they would not be part of the initial set of trusted data identified
by our approach, and the approach would generate false-positives
when the string fragments are used in a query. To account for
these cases, our technique provides developers with a mechanism
to specify additional sources of external data that should be trusted.
The data sources can be of various types, such as files, network con-
nections, and server variables. Our approach uses this information
to mark data coming from these additional sources as trusted.

In a typical scenario, we expect developers to specify most of the
trusted sources beforehand. However, some of these sources might
be overlooked until after a false positive is reported, in which case
developers would add the omitted data source to the list of trusted
sources. In this process, the set of trusted data sources grows mono-
tonically and eventually converges to a complete set that produces
no false positives. It is important to note that false positives that
occur after deployment would be due to the use of external data
sources that have never been used during in-house testing. In other
words, false positives are likely to occur only for totally untested
parts of the application. Therefore, even when developers fail to
completely identify and mark additional sources of trusted input
beforehand, we expect these sources to be identified during nor-
mal testing of the application, and the set of trusted data to quickly
converge to the complete set.

3.2 Accurate Taint Propagation
Taint propagation consists of tracking taint markings associated

with the data while the data is used and manipulated at runtime.
When tainting is used for security-related applications, it is es-
pecially important for the propagation to be accurate. Inaccurate
propagation can undermine the effectiveness of a technique by as-
sociating incorrect markings to data, which would cause the data
to be mishandled. In our approach, we provide a mechanism to ac-
curately mark and propagate taint information by (1) tracking taint
markings at a low level of granularity and (2) precisely accounting
for the effect of functions that operate on the tainted data.

Character-level tainting. We track taint information at the
character level rather than at the string level. We do this because,
for building SQ L queries, strings are constantly broken into sub-
strings, manipulated, and combined. B y associating taint informa-
tion to single characters, our approach can precisely model the ef-
fect of these string operations.

Accounting for string manipulations. To accurately main-
tain character-level taint information, we must identify all relevant
string operations and account for their effect on the taint markings
(i.e., we must enforce complete mediation of all string operations).
Our approach achieves this goal by taking advantage of the encap-
sulation offered by object-oriented languages, and in particular by
Java, in which all string manipulations are performed using a small
set of classes and methods. Our approach extends all such classes
and methods by adding functionality to update taint markings based
on the methods’ semantics.
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We discuss the language specific details of our implementation
of the taint markings and their propagation in Section 4.

3.3 Syntax-Aware Evaluation
Besides ensuring that taint markings are correctly created and

maintained during execution, our approach must be able to use the
taint markings to distinguish legitimate from malicious queries. A n
approach that simply forbids the use of untrusted data in SQ L com-
mands is not a viable solution because it would flag any query that
contains user input as an SQ LI A , leading to many false positives.
To address this shortcoming, researchers have introduced the con-
cept of declassification, which permits the use of tainted input as
long as it has been processed by a sanitizing function. (A sanitiz-
ing function is typically a filter that performs operations such as
regular expression matching or sub-string replacement.) The idea
of declassification is based on the assumption that sanitizing func-
tions are able to eliminate or neutralize harmful parts of the input
and make the data safe. However, in practice, there is no guaran-
tee that the checks performed by a sanitizing function are adequate.
Tainting approaches based on declassification could therefore gen-
erate false negatives if they mark as trusted supposedly-sanitized
data that is in fact still harmful. Moreover, these approaches may
also generate false positives in cases where unsanitized, but per-
fectly legal input is used within a query.

Syntax-aware evaluation does not depend on any (potentially un-
safe) assumptions about the effectiveness of sanitizing functions
used by developers. It also allows for the use of untrusted input
data in an SQ L query as long as the use of such data does not cause
an SQ LI A . The key feature of syntax-aware evaluation is that it
considers the context in which trusted and untrusted data is used
to make sure that all parts of a query other than string or numeric
literals (e.g., SQ L keywords and operators) consist only of trusted
characters. A s long as untrusted data is confined to literals, we are
guaranteed that no SQ LI A can be performed. Conversely, if this
property is not satisfied (e.g., if an SQ L operator contains charac-
ters not marked as trusted), we can assume that the operator has
been injected by an attacker and block the query.

Our technique performs syntax-aware evaluation of a query string
immediately before the string is sent to the database to be executed.
To evaluate the query string, the technique first uses an SQ L parser
to break the string into a sequence of tokens that correspond to
SQ L keywords, operators, and literals. The technique then iter-
ates through the tokens and checks whether tokens (i.e., substrings)
other than literals contain only trusted data. If all of the tokens
pass this check, the query is considered safe and allowed to exe-
cute. A s discussed in Section 3.1, this approach can also handle
cases where developers use external query fragments to build SQ L
commands. In these cases, developers would specify which exter-
nal data sources must be trusted, and our technique would mark and
treat data coming from these sources accordingly.

This default approach, which (1) considers only two kinds of
data (trusted and untrusted) and (2) allows only trusted data to form
SQ L keywords and operators, is adequate for most Web applica-
tions. For example, it can handle applications where parts of a
query are stored in external files or database records that were cre-
ated by the developers. Nevertheless, to provide greater flexibility
and support a wide range of development practices, our technique
also allows developers to associate custom trust markings to differ-
ent data sources and provide custom trust policies that specify the
legal ways in which data with certain trust markings can be used.
Trust policies are functions that take as input a sequence of SQ L to-
kens and perform some type of check based on the trust markings
associated with the tokens.

B U G Z I L L A (h t t p : / / www . b u g z i l l a . o r g) is an example
of a Web application for which developers might wish to spec-
ify a custom trust marking and policy. In B U G Z I L L A , parts of
queries used within the application are retrieved from a database
when needed. O f particular concern to developers, in this scenario,
is the potential for second-order injection attacks [1] (i.e., attacks
that inject into a database malicious strings that result in an SQ LI A
only when they are later retrieved and used to build SQ L queries).
In the case of B U G Z I L L A , the only sub-queries that should origi-
nate from the database are specific predicates that form a query ’s
WHERE clause. Using our technique, developers could first create
a custom trust marking and associate it with the database’s data
source. Then, they could define a custom trust policy that speci-
fies that data with such custom trust marking are legal only if they
match a specific pattern, such as the following:

( i d | s e v e r i t y ) = ’ \ w+ ’ ( ( AND | OR ) ( i d | s e v e r i t y ) = ’ \ w+ ’ ) *

When applied to sub-queries originating from the database, this
policy would allow them to be used only to build conditional clauses
that involve the i d or s e v e r i t y fields and whose parts are con-
nected using the AND or OR keywords.

3.4 Minimal Deployment Requirements
Most existing approaches based on dynamic tainting require the

use of customized runtime systems and/or impose a considerable
overhead on the protected applications (see Section 6). On the con-
trary, our approach has minimal deployment requirements and is
efficient, which makes it practical for usage in real settings. The
use of our technique does not necessitate a customized runtime sys-
tem. It requires only minor, localized instrumentation of the appli-
cation to (1) enable the usage of our modified string library and (2)
insert the calls that perform syntax-aware evaluation of a query be-
fore the query is sent to the database. The protected application is
then deployed as any normal Web application, except that the de-
ployment must include our string library. Both instrumentation and
deployment are fully automated. We discuss deployment require-
ments and overhead of the approach in greater detail in Sections 4.5
and 5.3.

4. I MPL E M ENTATION
To evaluate our approach, we developed a prototype tool called

WA SP (Web A pplication SQ L Injection Preventer) that is written
in Java and implements our technique for Java-based Web appli-
cations. We chose to target Java because it is a commonly-used
language for developing Web applications. Moreover, we already
have a significant amount of analysis and experimental infrastruc-
ture for Java applications. We expect our approach to be applicable
to other languages as well.

F igure 2 shows the high-level architecture of WA SP. A s the fig-
ure shows, WA SP consists of a library (MetaStrings) and two core
modules (S T R I N G I N I T I A L I Z E R A N D I N S T R U M E N T E R and S T R I N G
C H E C K E R). The MetaStrings library provides functionality for as-
signing trust markings to strings and precisely propagating the mark-
ings at runtime. Module S T R I N G I N I T I A L I Z E R A N D I N S T R U M E N T E R
instruments Web applications to enable the use of the MetaStrings
library and add calls to the S T R I N G C H E C K E R module. Module
S T R I N G C H E C K E R performs syntax-aware evaluation of query strings
right before the strings are sent to the database.

In the next sections, we discuss WA SP ’s modules in more detail.
We use the sample code introduced in Section 2 to provide illustra-
tive examples of various implementation aspects.
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Figure 2: High-level overview of the approach and tool.

4.1 The MetaStrings Library
MetaStrings is our library of classes that mimic and extend the

behavior of Java’s standard string classes (i.e., Ch a r a c t e r , S t r i -
n g, S t r i n gBu i l d e r , and S t r i n gBu f f e r ).3 For each string
class C, MetaStrings provides a “meta” version of the class, Me t a C,
that has the same functionality as C, but allows for associating
metadata with each character in a string and tracking the metadata
as the string is manipulated at runtime.

The MetaStrings library takes advantage of the object-oriented
features of the Java language to provide complete mediation of
string operations that could affect string values and their associ-
ated trust markings. Encapsulation and information hiding guaran-
tee that the internal representation of a string class is accessed only
through the class’s interface. Polymorphism and dynamic binding
let us add functionality to a string class by (1) creating a subclass
that overrides all methods of the original class and (2) replacing in-
stantiations of the original class with instantiations of the subclass.

A s an example, F igure 3 shows an intuitive view of the MetaS-
trings class that corresponds to Java’s S t r i n g class. A s the figure
shows, Me t a S t r i n g extends class S t r i n g, has the same inter-
nal representation, and provides the same methods. Me t a S t r i n g
also contains additional data structures for storing metadata and as-
sociating the metadata with characters in the string. Each method of
class Me t a S t r i n g overrides the corresponding method in S t r i -
n g, providing the same functionality as the original method, but
also updating the metadata based on the method’s semantics. For
example, a call to method s u b s t r i n g ( 2 , 4 ) on an object s t r of
class Me t a S t r i n g would return a new Me t a S t r i n g that con-
tains the second and third characters of s t r and the correspond-
ing metadata. In addition to the overridden methods, MetaStrings

3 For simplicity, hereafter we use the term string to refer to all
string-related classes and objects in Java.

classes also provide methods for setting and querying the metadata
associated with a string’s characters.

The use of MetaStrings has the following benefits: (1) it allows
for associating trust markings at the granularity level of single char-
acters; (2) it accurately maintains and propagates trust markings;
(3) it is defined completely at the application level and therefore
does not require a customized runtime system; (4) its usage requires
only minimal and automatically performed changes to the applica-
tion’s bytecode; and (5) it imposes a low execution overhead on the
Web application (See Section 5.3).

The main limitations of the current implementation of the MetaS-
trings library are related to the handling of primitive types, native
methods, and reflection. MetaStrings cannot currently assign trust
markings to primitive types, so it cannot mark c h a r values. Be-
cause we do not instrument native methods, if a string class is
passed as an argument to a native method, the trust marking associ-
ated with the string might not be correct after the call. In the case of
hard-coded strings created through reflection (by invoking a string
constructor by name), our instrumenter for MetaStrings would not
recognize the constructors and would not change these instantia-
tions to instantiations of the corresponding meta classes. However,
the MetaStrings library can handle most other uses of reflection,
such as invocation of string methods by name.

In practice, these limitations are of limited relevance because
they represent programming practices that are not normally used
to build SQ L commands (e.g., representing strings using primitive
c h a r values). Moreover, during instrumentation of a Web applica-
tion, we identify and report these potentially problematic situations
to the developers.

4.2 Initialization of Trusted Strings
To implement positive tainting, WA SP must be able to identify

and mark trusted strings. There are three categories of strings that
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Figure 3: Intuitive view of a MetaStrings library class.

WA SP must consider: hard-coded strings, strings implicitly created
by Java, and strings originating from external sources. In the fol-
lowing sections, we explain how strings from each category are
identified and marked.

Hard-Coded Strings. The identification of hard-coded strings
in an application’s bytecode is a fairly straightforward process. In
Java, hard-coded strings are represented using S t r i n g objects that
are created automatically by the Java Virtual Machine (J V M) when
string literals are loaded onto the stack. (The J V M is a stack-based
interpreter.) Therefore, to identify hard-coded strings, WA SP sim-
ply scans the bytecode and identifies all load instructions whose
operand is a string constant. WA SP then instruments the code by
adding, after each of these load instructions, code that creates an
instance of a Me t a S t r i n g class using the hard-coded string as
an initialization parameter. F inally, because hard-coded strings are
completely trusted, WA SP adds to the code a call to the method of
the newly created Me t a S t r i n g object that marks all characters
as trusted. A t runtime, polymorphism and dynamic binding allow
this instance of the MetaString object to be used in any place where
the original S t r i n g object would have been used.

F igure 4 shows an example of this bytecode transformation. The
Java code at the top of the figure corresponds to line 4 of our servlet
example (see F igure 1), which creates one of the hard-coded strings
in the servlet. Underneath, we show the original bytecode (left),
and the modified bytecode (right). The modified bytecode contains
additional instructions that (1) load a new Me t a S t r i n g object on
the stack, (2) call the Me t a S t r i n g constructor using the previous
string as a parameter, and (3) call the method ma r k A l l , which
assigns the given trust marking to all characters in the string.

Implicitly-Created Strings. In Java programs, the creation of
some string objects is implicitly added to the bytecode by the com-
piler. For example, Java compilers typically translate the string
concatenation operator (“ + ”) into a sequence of calls to the a p p e n d

method of a newly-created S t r i n gBu i l d e r object. WA SP must
replace these string objects with their corresponding MetaStrings
objects so that they can maintain and propagate the trust markings
of the strings on which they operate. To do this, WA SP scans the
bytecode for instructions that create new instances of the string
classes used to perform string manipulation and modifies each such
instruction so that it creates an instance of the corresponding MetaS-
trings class instead. In this case, WA SP does not associate any trust
markings with the newly-created MetaStrings objects. These ob-
jects are not trusted per se, and they become marked only if the
actual values assigned to them during execution are marked.

F igure 5 shows the instrumentation added by WA SP for implicitly-
created strings. The Java source code corresponds to line 5 in our
example servlet. The S t r i n gBu i l d e r object at offset 28 in the
original bytecode is added by the Java compiler when translating
the string concatenation operator (“ + ”). WA SP replaces the instanti-
ation at offset 28 with the instantiation of a Me t a S t r i n gBu i l d e r
class and then changes the subsequent invocation of the constructor
at offset 37 so that it matches the newly instantiated class. Because
Me t a S t r i n gBu i l d e r extends S t r i n gBu i l d e r , the subse-
quent calls to the append method invoke the correct method in the
Me t a S t r i n gBu i l d e r class.

Strings from External Sources. To use query fragments com-
ing from external (trusted) sources, developers must list these sources
in a configuration file that WA SP processes before instrumenting the
application. The specified sources can be of different types, such
as files (specified by name), network connections (specified by host
and port), and databases (specified by database name, table, field,
or combination thereof). For each source, developers can either
specify a custom trust marking or use the default trust marking (the
same used for hard-coded strings). WA SP uses the information in
the configuration file to instrument the external trusted sources ac-
cording to their type.

To illustrate this process, we describe the instrumentation that
WA SP performs for trusted strings coming from a file. In the con-
figuration file, the developer specifies the name of the file (e.g.,
f o o . t x t ) as a trusted source of strings. Based on this informa-
tion, WA SP scans the bytecode for all instantiations of new file ob-
jects (i.e., F i l e , F i l e I n p u t S t r e am, F i l eRe a d e r ) and adds
instrumentation that checks the name of the file being accessed. A t
runtime, if the name of the file matches the name(s) specified by
the developer ( f o o . t x t in this case), the file object is added to an
internal list of currently trusted file objects. WA SP also instruments
all calls to methods of file-stream objects that return strings, such as
Bu f f e r e dRe a d e r ’s r e a d L i n e method. A t runtime, the added
code checks to see whether the object on which the method is called
is in the list of currently trusted file objects. If so, it marks the gen-
erated strings with the trust marking specified by the developer for
the corresponding source.

We use a similar strategy to mark network connections. In this
case, instead of matching file names at runtime, we match host-
names and ports. The interaction with databases is more compli-
cated and requires WA SP not only to match the initiating connec-
tion, but also to trace tables and fields through instantiations of the
S t a t eme n t and Re s u l t S e t objects created when querying the
database.

Instrumentation Optimization. Our current instrumentation
approach is conservative and may generate unneeded instrumenta-
tion. We could limit the amount of instrumentation inserted in the
code by leveraging static information about the program. For exam-
ple, data-flow analysis could identify strings that are not involved
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Source Code: 4 . S t r i n g q u e r y = " SE L ECT a c c t FROM u s e r s WHERE l o g i n = ’ " ;
Original Bytecode Modified Bytecode

2 4 . l d c " SE L ECT a c c t FROM u s e r s WHERE l o g i n = ’ "

2 4 a . n ew Me t a S t r i n g
2 4 b . d u p
2 4 c . l d c " SE L ECT a c c t FROM u s e r s WHERE l o g i n = ’ "
2 4 e . i n v o k e s p e c i a l Me t a S t r i n g . < i n i t > : ( LS t r i n g ) V
2 4 d . i c o n s t _ 1
2 4 e . i n v o k e v i r t u a l Me t a S t r i n g . ma r k A l l : ( I ) V

Figure 4: Instrumentation for hard-coded strings.

Source Code: 5 . q u e r y + = l o g i n + " ’ AND p i n = " + p i n ;
Original Bytecode Modified Bytecode

2 8 . n ew S t r i n gBu i l d e r
3 1 . d u p
3 2 . a l o a d 4
3 4 . i n v o k e s t a t i c S t r i n g . v a l u eO f : ( Ob j e c t ) LS t r i n g ;
3 7 . i n v o k e s p e c i a l S t r i n gBu i l d e r . < i n i t > : ( LS t r i n g ; ) V
4 0 . a l o a d _ 1
4 1 . i n v o k e v i r t u a l S t r i n gBu i l d e r .

a p p e n d : ( LS t r i n g ; ) LS t r i n gBu i l d e r ;
4 4 . l d c " ’ AND p i n = "
4 6 . i n v o k e v i r t u a l S t r i n gBu i l d e r .

a p p e n d : ( LS t r i n g ; ) LS t r i n gBu i l d e r ;
4 9 . a l o a d _ 2
5 0 . i n v o k e v i r t u a l S t r i n gBu i l d e r .

a p p e n d : ( LS t r i n g ; ) LS t r i n gBu i l d e r ;
5 3 . i n v o k e v i r t u a l S t r i n gBu i l d e r . t oS t r i n g : ( ) LS t r i n g ;

2 8 . n ew Me t a S t r i n gBu i l d e r
3 1 . d u p
3 2 . a l o a d 4
3 4 . i n v o k e s t a t i c S t r i n g . v a l u eO f : ( LOb j e c t ) LS t r i n g ;
3 7 . i n v o k e s p e c i a l Me t a S t r i n gBu i l d e r . < i n i t > : ( LS t r i n g ; ) V
4 0 . a l o a d _ 1
4 1 . i n v o k e v i r t u a l S t r i n gBu i l d e r . a p p e n d : ( LS t r i n g ; ) LS t r i n gBu i l d e r ;
4 4 a . n ew Me t a S t r i n g
4 4 b . d u p
4 4 c . l d c " ’ AND p i n = "
4 4 e . i n v o k e s p e c i a l Me t a S t r i n g . < i n i t > : ( LS t r i n g ) V
4 4 d . i c o n s t _ 1
4 4 e . i n v o k e v i r t u a l Me t a S t r i n g . ma r k A l l : ( I ) V
4 6 . i n v o k e v i r t u a l S t r i n gBu i l d e r . a p p e n d : ( LS t r i n g ; ) LS t r i n gBu i l d e r ;
4 9 . a l o a d _ 2
5 0 . i n v o k e v i r t u a l S t r i n gBu i l d e r . a p p e n d : ( LS t r i n g ; ) LS t r i n gBu i l d e r ;
5 3 . i n v o k e v i r t u a l S t r i n gBu i l d e r . t oS t r i n g : ( ) LS t r i n g ;

Figure 5: Instrumentation for implicitly-created strings.

with the construction of query strings and thus do not need to be
instrumented. A nother example involves cases where static analy-
sis could determine that the filename associated with a file object
is never one of the developer-specified trusted filenames, that ob-
ject would not need to be instrumented. A nalogous optimizations
could be implemented for other external sources. We did not in-
corporate any of these optimizations in the current tool because we
were mostly interested in having an initial prototype to assess our
technique. However, we are planning to implement them in future
work to further reduce runtime overhead.

4.3 Handling False Positives
A s discussed in Section 3, sources of trusted data that are not

specified by the developers beforehand would cause WA SP to gen-
erate false positives. To assist the developers in identifying data
sources that they initially overlooked, WA SP provides a special mode
of operation, called “ learning mode”, that would typically be used
during in-house testing. When in learning mode, WA SP adds an
additional unique taint marking to each string in the application.
Each marking consists of an ID that maps to the fully qualified class
name, method signature, and bytecode offset of the instruction that
instantiated the corresponding string.

If WA SP detects an SQ LI A while in learning mode, it uses the
markings associated with the untrusted SQ L keywords and opera-
tors in the query to report the instantiation point of the correspond-
ing string(s). If the SQ LI A is actually a false positive, knowing the
position in the code of the offending string(s) would help develop-
ers correct omissions in the set of trusted inputs.

4.4 Syntax-Aware Evaluation
The S T R I N G C H E C K E R module performs syntax-aware evalua-

tion of query strings and is invoked right before the strings are sent
to the database. To add calls to the S T R I N G C H E C K E R module,
WA SP first identifies all of the database interaction points: points
in the application where query strings are issued to an underlying
database. In Java, all calls to the database are performed via spe-

cific methods and classes in the JD B C library (h t t p : / / j a v a .
s u n . c om / p r o d u c t s / j d b c / ). Therefore, these points can be
identified through a simple matching of method signatures. A f-
ter identifying the database interaction points, WA SP inserts a call
to the syntax-aware evaluation function, Me t a Ch e c k e r , imme-
diately before each interaction point. Me t a Ch e c k e r takes the
MetaStrings object that contains the query about to be executed as
a parameter.

When invoked, Me t a Ch e c k e r processes the SQ L string about
to be sent to the database as discussed in Section 3.3. F irst, it tok-
enizes the string using an SQ L parser. Ideally, WA SP would use a
database parser that recognizes the exact same dialect of SQ L that
is used by the database. This would guarantee that WA SP interprets
the query in the same way as the database and would prevent attacks
based on alternate encodings [1]—attacks that obfuscate keywords
and operators to elude signature-based checks. Our current imple-
mentation includes parsers for SQ L-92 (A NSI) and PostgreSQ L.
A fter tokenizing the query string, Me t a Ch e c k e r enforces the de-
fault trust policy by iterating through the tokens that correspond to
keywords and operators and examining their trust markings. If any
of these tokens contains characters that are not marked as trusted,
the query is blocked and reported.

If developers specified additional trust policies, Me t a Ch e c k e r
invokes the corresponding checking function(s) to ensure that the
query complies with them. In our current implementation, trust
policies are developer-defined functions that take the list of SQ L
tokens as input, perform some type of check on them based on
their trust markings, and return a t r u e or f a l s e value depending
on the outcome of the check. Trust policies can implement func-
tionality that ranges from simple pattern matching to sophisticated
checks that use externally-supplied contextual information. If all
custom trust policies return a positive outcome, WA SP allows the
query to be executed on the database. Otherwise, it classifies the
query as an SQ LI A , blocks it, and reports it.
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SE L ECT a c c t FROM u s e r s WHERE l o g i n = ’ d o e ’ AND p i n = 1 2 3

Figure 6: Example query 1 after parsing by runtime monitor.

SE L ECT a c c t FROM u s e r s WHERE l o g i n = ’ a dm i n ’ - - ’ AND p i n = 0

Figure 7: Example query 2 after parsing by runtime monitor.

We illustrate how the default policy for syntax-aware evaluation
works using our example servlet and the legitimate and malicious
query examples from Section 2. For the servlet there are no external
sources of strings or additional trust policies, so WA SP only marks
the hard-coded strings as trusted, and only the default trust policy
is applied. F igure 6 shows the sequence of tokens in the legitimate
query as they would be parsed by Me t a Ch e c k e r . In the figure,
SQ L keywords and operators are surrounded by boxes. The figure
also shows the trust markings associated with the strings, where
an underlined character is a character with full trust markings. Be-
cause the default trust policy is that all keyword and operator tokens
must have originated from trusted strings, Me t a Ch e c k e r simply
checks whether all these tokens are comprised of trusted charac-
ters. The query in F igure 6 conforms to the trust policy and is thus
allowed to execute on the database.

Consider the malicious query, where the attacker submits “ a dm i n ’
− − ” as the login and “ 0 ” as the pin. F igure 7 shows the sequence
of tokens for the resulting query together with the trust markings.
Recall that − − is the SQ L comment operator, so everything af-
ter this is identified by the parser as a literal. In this case, the
Me t a Ch e c k e r would find that the last two tokens, ’ and − −
contain untrusted characters. It would therefore classify the query
as an SQ LI A and prevent it from executing.

4.5 Deployment Requirements
Using WA SP to protect a Web application requires the devel-

oper to run an instrumented version of the application. There are
two general implementation strategies that we can follow for the
instrumentation: off-line or on-line. O ff-line instrumentation in-
struments the application statically and deploys the instrumented
version of the application. On-line instrumentation deploys an un-
modified application and instruments the code at load time (i.e.,
when classes are loaded by the J V M). This latter option allows
for a great deal of flexibility and can be implemented by leverag-
ing the new instrumentation package introduced in Java 5 (h t t p :
/ / j a v a . s u n . c om / j 2 s e / 1 . 5 . 0 / ).

Unfortunately, the current implementation of the Java 5 instru-
mentation package is still incomplete and does not yet provide some
key features needed by WA SP. In particular, it does not allow for
clearing the f i n a l flag in the string library classes, which pre-
vents the MetaStrings library from extending them. Because of this
limitation, for now we have chosen to rely on off-line instrumenta-
tion and to splice into the Java library a version of the string classes
in which the f i n a l flag has been cleared.

O verall, the deployment requirements for our approach are fairly
lightweight. The modification of the Java library is performed only
once, in a fully automated way, and takes just a few seconds. No
modification of the Java Virtual Machine is required. The instru-
mentation of a Web application is also performed automatically.
G iven the original application, WA SP creates a deployment archive
that contains the instrumented application, the MetaStrings library,
and the string checker module. A t this point, the archive can be
deployed like any other Web application. WA SP can therefore be
easily and transparently incorporated into an existing build process.

Table 1: Subject programs for the empirical study.
Subject LO C DBIs Servlets Params
Checkers 5,421 5 18 (61) 44 (44)
O ffice Talk 4,543 40 7 (64) 13 (14)
Employee D irectory 5,658 23 7 (10) 25 (34)
Bookstore 16,959 71 8 (28) 36 (42)
E vents 7,242 31 7 (13) 36 (46)
C lassifieds 10,949 34 6 (14) 18 (26)
Portal 16,453 67 3 (28) 39 (46)

5. EVA LUATION
The goal of our empirical evaluation is to assess the effective-

ness and efficiency of the approach presented in this paper when
applied to a testbed of Web applications. In the evaluation, we used
our implementation of WA SP and investigated the following three
research questions:

RQ1: What percentage of attacks can WA SP detect and prevent
that would otherwise go undetected and reach the database?

RQ2: What percentage of legitimate accesses does WA SP iden-
tify as SQ LI A s and prevent from executing on the database?

RQ3: How much runtime overhead does WA SP impose?
The first two questions deal with the effectiveness of the technique:
RQ1 addresses the false negative rate of the technique, and RQ2
addresses the false positive rate. RQ3 deals with the efficiency of
the proposed technique. The following sections discuss our exper-
iment setup, protocol, and results.

5.1 Experiment Setup
Our experiments are based on an evaluation framework that we

developed and has been used by us and other researchers in previ-
ous work [9, 24]. The framework provides a testbed that consists
of several Web applications, a logging infrastructure, and a large
set of test inputs containing both legitimate accesses and SQ LI A s.
In the next two sections we summarize the relevant details of the
framework.

5.1.1 Subjects
Our set of subjects consists of seven Web applications that accept

user input via Web forms and use it to build queries to an underlying
database. F ive of the seven applications are commercial applica-
tions that we obtained from GotoCode (h t t p : / / www . g o t o c o d e .
c om / ): Employee D irectory, Bookstore, E vents, C lassifieds, and
Portal. The other two, Checkers and O fficeTalk, are applications
developed by students that have been used in previous related stud-
ies [7].

For each subject, Table 1 provides the size in terms of lines of
code (LO C) and the number of database interaction points (DBIs).
To be able to perform our studies in an automated fashion and
collect a larger number of data points, we considered only those
servlets that can be accessed directly, without complex interactions
with the application. Therefore, we did not include in the evalua-
tion servlets that require the presence of specific session data (i.e.,
cookies containing specific information) to be accessed. Column
Servlets reports, for each application, the number of servlets con-
sidered and, in parentheses, the total number of servlets. Column
Params reports the number of injectable parameters in the acces-
sible servlets, with the total number of parameters in parentheses.
Non-injectable parameters are state parameters whose purpose is to
maintain state, and which are not used to build queries.

5.1.2 Test Input Generation
For each application in the testbed, there are two sets of inputs:

LE GIT, which consists of legitimate inputs for the application, and
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ATTAC K, which consists of SQ LI A s. The inputs were generated
independently by a Master’s level student with experience in devel-
oping commercial penetration testing tools for Web applications.
Test inputs were not generated for non-accessible servlets and for
state parameters.

To create the AT TA C K set, the student first built a set of po-
tential attack strings by surveying different sources: exploits devel-
oped by professional penetration-testing teams to take advantage of
SQ L-injection vulnerabilities; online vulnerability reports, such as
US-C E RT (h t t p : / / www . u s - c e r t . g o v / ) and C E RT/C C A d-
visories (h t t p : / / www . c e r t . o r g / a d v i s o r i e s / ); and infor-
mation extracted from several security-related mailing lists. The
resulting set of attack strings contained 30 unique attacks that had
been used against applications similar to the ones in the testbed.
A ll types of attacks reported in the literature [10] were represented
in this set except for multi-phase attacks such as overly-descriptive
error messages and second-order injections. Since multi-phase at-
tacks require human intervention and interpretation, we omitted
them to keep our testbed fully automated. The student then gen-
erated a complete set of inputs for each servlet’s injectable parame-
ters using values from the set of initial attack strings and legitimate
values. The resulting AT TA C K set contained a broad range of po-
tential SQ LI A s.

The L E G IT set was created in a similar fashion. However, in-
stead of using attack strings to generate sets of parameters, the
student used legitimate values. To create “ interesting” legitimate
values, we asked the student to create inputs that would stress and
possibly break naı̈ve SQ LI A detection techniques (e.g., techniques
based on simple identification of keywords or special characters in
the input). The result was a set of legitimate inputs that contained
SQ L keywords, operators, and troublesome characters, such as sin-
gle quotes and comment operators.

5.2 Experiment Protocol
To address the first two research questions, we ran the AT TA C K

and L E G IT input sets against the testbed applications and assessed
WA SP ’s effectiveness in stopping attacks without blocking legiti-
mate accesses. For RQ1, we ran all of the inputs in the AT TA C K
set and tracked the result of each attack. The results for RQ1 are
summarized in Table 2. The second column reports the total num-
ber of attacks in the L E G IT set for each application. The next two
columns report the number of attacks that were successful on the
original web applications and on the web applications protected
by WA SP. (Many of the applications performed input validation of
some sort and were able to block a subset of the attacks.) For RQ2,
we ran all of the inputs in the L E G IT set and checked how many
of these legitimate accesses WA SP allowed to execute. The results
for this second study are summarized in Table 3. The table shows
the number of legitimate accesses WA SP allowed to execute (# Le-
gitimate Accesses) and the number of accesses blocked by WA SP
( False Positives).

To address RQ3, we computed the overhead imposed by WA SP
on the subjects. To do this, we measured the times required to
run all of the inputs in the L E G IT set against instrumented and
uninstrumented versions of each application and compared these
two times. To avoid problems of imprecision in the timing mea-
surements, we measured the time required to run the entire L E G IT
set and then divided it by the number of test inputs to get a per-
access average time. A lso, to account for possible external fac-
tors beyond our control, such as network traffic, we repeated these
measurements 100 times for each application and averaged the re-
sults. The study was performed on two machines, a client and a
server. The client was a Pentium 4, 2.4Ghz, with 1G B memory,

Table 2: Results for effectiveness in SQ LIAs prevention (RQ1).

Successful Attacks
Subject Total # Original WA SP Protected

Attacks Web Apps Web Apps
Checkers 4,431 922 0
O ffice Talk 5,888 499 0
Empl. D ir. 6,398 2,066 0
Bookstore 6,154 1,999 0
E vents 6,207 2,141 0
C lassifieds 5,968 1,973 0
Portal 6,403 3,016 0

Table 3: Results for false positives (RQ2).
Subject # Legitimate Accesses False Positives
Checkers 1,359 0
O ffice Talk 424 0
Empl. D ir. 658 0
Bookstore 607 0
E vents 900 0
C lassifieds 574 0
Portal 1,080 0

running G N U/L inux 2.4. The server was a dual-processor Pentium
D, 3.0Ghz, with 2G B of memory, running G N U/L inux 2.6.

Table 4 shows the results of this study. For each subject, the
table reports the number of inputs in the L E G IT set (# Inputs); the
average time per database access (Avg Access Time); the average
time overhead per access (Avg Overhead); and the average time
overhead as a percentage (% Overhead). In the table, all absolute
times are expressed in milliseconds.

5.3 Discussion of Results
O verall, the results of our studies indicate that WA SP is an ef-

fective technique for preventing SQ LI A s. In our evaluation, WA SP
was able to correctly identify all SQ LI A s without generating any
false positives. In total, WA SP stopped 12,616 viable SQ LI A s and
correctly allowed 5,602 legitimate accesses to the applications.

In most cases, the runtime average imposed by WA SP was very
low. For the seven applications, the average overhead was 5ms
(6%). For most Web applications, this cost is low enough that it
would be dominated by the cost of the network and database ac-
cesses. One application, Portal, incurred an overhead considerably
higher than the other applications (but still negligible in absolute
terms). We determined that the higher overhead was due to the fact
that Portal generates a very large number of string-based lookup
tables. A lthough these strings are not used to build queries, WA SP
associates trust markings to them and propagates these markings at
runtime. The optimizations discussed in Section 4.2 would elimi-
nate this issue and reduce the overhead considerably.

The main threat to the external validity of our results is that the
set of applications and attacks considered in the studies may not be
representative of real world applications and attacks. However, all
but two of the considered applications are commercial applications,
and all have been used in other related studies. A lso, to generate
our set of attacks, we employed the services of a Master’s level
student who had experience with SQ LI A s, penetration testing, and
Web scanners, but was not familiar with our technique. F inally, the
attack strings used by the student as a basis for the generation of
the attacks were based on real-world SQ LI A s.
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Table 4: Results for overhead measurements (RQ3).
Subject # Inputs Avg Access Avg % Overhead

Time (ms) O verhead (ms)
Checkers 1,359 122 5 5%
O ffice Talk 424 56 1 2%
Empl. D ir. 658 63 3 5%
Bookstore 607 70 4 6%
E vents 900 70 1 1%
C lassifieds 574 70 3 5%
Portal 1,080 83 16 19%

6. RE L ATED WORK
The use of dynamic tainting to prevent SQ LI A s has been in-

vestigated by several researchers. The two approaches most sim-
ilar to ours are those by Nguyen-Tuong and colleagues [20] and
Pietraszek and Berghe [21]. Similar to them, we track taint infor-
mation at the character level and use a syntax-aware evaluation to
examine tainted input. However, our approach differs from theirs in
several important aspects. F irst, our approach is based on the novel
concept of positive tainting, which is an inherently safer way of
identifying trusted data (see Section 3.1). Second, we improve on
the idea of syntax-aware evaluation by (1) using a database parser
to interpret the query string before it is executed, thereby ensuring
that our approach can handle attacks based on alternate encodings,
and (2) providing a flexible mechanism that allows different trust
policies to be associated with different input sources. F inally, a
practical advantage of our approach is that it has more lightweight
deployment requirements. Their approaches require the use of a
customized PHP runtime interpreter, which adversely affects the
portability of the approaches.

Other dynamic tainting approaches more loosely related to our
approach are those by Haldar, Chandra, and Franz [8] and Mar-
tin, L ivshits, and Lam [17]. A lthough they also propose dynamic
tainting approaches for Java-based applications, their techniques
differ significantly from ours. F irst, they track taint information at
the level of granularity of strings, which introduces imprecision in
modeling string operations. Second, they use declassification rules,
instead of syntax-aware evaluation, to assess whether a query string
contains an attack. Declassification rules assume that sanitizing
functions are always effective, which is an unsafe assumption and
may leave the application vulnerable to attacks—in many cases, at-
tack strings can pass through sanitizing functions and still be harm-
ful. A nother dynamic tainting approach, proposed by Newsome
and Song [19], focuses on tainting at a level that is too low to be
used for detecting SQ LI A s and has a very high execution overhead.

Researchers also proposed dynamic techniques against SQ LI A s
that do not rely on tainting. These techniques include Intrusion
Detection Systems (IDS) and automated penetration testing tools.
Scott and Sharp propose Security Gateway [23], which uses develo-
per-provided rules to filter Web traffic, identify attacks, and ap-
ply preventive transformations to potentially malicious inputs. The
success of this approach depends on the ability of developers to
write accurate and meaningful filtering rules. Similarly, Valeur and
colleagues [25] developed an IDS that uses machine learning to
distinguish legitimate and malicious queries. Their approach, like
most learning-based techniques, is limited by the quality of the IDS
training set. Machine learning was also used in WAV ES [12], an
automated penetration testing tool that probes websites for vulner-
ability to SQ LI A s. L ike all testing tools, WAV ES cannot provide
any guarantees of completeness. SQ Lrand [2] appends a random
token to SQ L keywords and operators in the application code. A
proxy server then checks to make sure that all keywords and oper-

ators contain this token before sending the query to the database.
Because the SQ L keywords and operators injected by an attacker
would not contain this token, they would be easily recognized as
attacks. The drawbacks of this approach are that the secret token
could be guessed, so making the approach ineffective, and that the
approach requires the deployment of a special proxy server.

Model-based approaches against SQ LI A s include A M N ESI A [9],
SQ L-Check [24], and SQ L Guard [3]. A M N ESI A , previously de-
veloped by two of the authors, combines static analysis and runtime
monitoring to detect SQ LI A s. The approach uses static analysis to
build models of the different types of queries an application can
generate and dynamic analysis to intercept and check the query
strings generated at runtime against the model. Non-conforming
queries are identified as SQ LI A s. Problems with this approach are
that it is dependent on the precision and efficiency of its underlying
static analysis, which may not scale to large applications. Our new
technique takes a purely dynamic approach to preventing SQ LI A s,
thereby eliminating scalability and precision problems. In [24], Su
and Wassermann present a formal definition of SQ LI A s and pro-
pose a sound and complete (under certain assumptions) algorithm
that can identify all SQ LI A s by using an augmented grammar and
by distinguishing untrusted inputs from the rest of the strings by
means of a marking mechanism. The main weakness of this ap-
proach is that it requires the manual intervention of the developer to
identify and annotate untrusted sources of input, which introduces
incompleteness problems and may lead to false negatives. Our use
of positive tainting eliminates this problem while providing similar
guarantees in terms of effectiveness. SQ L Guard [3] is an approach
similar to SQ L Check. The main difference is that SQ L Guard builds
its models on the fly by requiring developers to call a special func-
tion and to pass to the function the query string before user input is
added.

Other approaches against SQ LI A s rely purely on static analy-
sis [13, 14, 15, 27]. These approaches scan the application and
leverage information flow analysis or heuristics to detect code that
could be vulnerable to SQ LI A s. Because of the inherently impre-
cise nature of the static analysis they use, these techniques can
generate false positives. Moreover, since they rely on declassifi-
cation rules to transform untrusted input into safe input, they can
also generate false negatives. Wassermann and Su propose a tech-
nique [26] that combines static analysis and automated reasoning
to detect whether an application can generate queries that contain
tautologies. This technique is limited, by definition, in the types of
SQ LI A s that it can detect.

F inally, researchers have also focused on ways to directly im-
prove the code of an application and eliminate vulnerabilities. De-
fensive coding best practices [11] have been proposed as a way
to eliminate SQ L injection vulnerabilities. These coding practices
have limited effectiveness because they mostly rely on the abil-
ity and training of the developer. Moreover, there are many well-
known ways to evade certain types of defensive-coding practices,
including “pseudo-remedies” such as stored procedures and pre-
pared statements (e.g., [1, 16, 11]). Researchers have also de-
veloped special libraries that can be used to safely create SQ L
queries [4, 18]. These approaches, although highly effective, re-
quire developers to learn new A PIs for developing queries, are very
expensive to apply on legacy code, and sometimes limit the expres-
siveness of SQ L. F inally, JD B C-Checker [6, 7] is a static analysis
tool that detects potential type mismatches in dynamically gener-
ated queries. A lthough it was not intended to prevent SQ LI A s,
JD B C-Checker can be effective against SQ LI A s that leverage vul-
nerabilities due to type-mismatches, but will not be able to prevent
other kinds of SQ LI A s.
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7. CONC LUSION
We presented a novel, highly automated approach for detecting

and preventing SQ L injection attacks in Web applications. Our ba-
sic approach consists of (1) identifying trusted data sources and
marking data coming from these sources as trusted, (2) using dy-
namic tainting to track trusted data at runtime, and (3) allowing
only trusted data to become SQ L keywords or operators in query
strings. Unlike previous approaches based on dynamic tainting,
our technique is based on positive tainting, which explicitly iden-
tifies trusted (rather than untrusted) data in the program. In this
way, we eliminate the problem of false negatives that may result
from the incomplete identification of all untrusted data sources.
False positives, while possible in some cases, can typically be eas-
ily eliminated during testing. Our approach also provides practical
advantages over the many existing techniques whose application
requires customized and complex runtime environments. The ap-
proach is defined at the application level, requires no modification
of the runtime system, and imposes a low execution overhead.

We have evaluated our approach by developing a prototype tool,
WA SP, and using the tool to protect several applications when sub-
jected to a large and varied set of attacks and legitimate accesses.
WA SP successfully and efficiently stopped over 12,000 attacks with-
out generating any false positives. Both our tool and experimental
infrastructure are available to other researchers.

We have three immediate goals for future work. The first goal
is to further improve the efficiency of the technique. To this end,
we will use static analysis to reduce the amount of instrumenta-
tion required by the approach. The second goal is to implement the
approach for binary applications, by leveraging a binary instrumen-
tation framework and defining a version of the MetaStrings library
that works at the binary level. F inally, we plan to evaluate our tech-
nique in a completely realistic context, by protecting one of the
Web applications running at Georgia Tech with WA SP and assess-
ing the effectiveness of WA SP in stopping real attacks directed at
the application while allowing legitimate accesses.
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Abstract
The testing of database applications poses new chal-

lenges for software engineers. In particular, it is diffi-
cult to thoroughly test the interactions between an appli-
cation and its underlying database, which typically occur
through dynamically-generated database commands. Be-
cause traditional code-based coverage criteria focus only
on the application code, they are often inadequate in exer-
cising these commands. To address this problem, we intro-
duce a new test adequacy criterion that is based on cover-
age of the database commands generated by an applica-
tion and specifically focuses on the application-database
interactions. We describe the criterion, an analysis that
computes the corresponding testing requirements, and an
efficient technique for measuring coverage of these require-
ments. We also present a tool that implements our approach
and a preliminary study that shows the approach’s potential
usefulness and feasibility.

1 Introduction

Database applications are an important component of many
software systems in areas such as banking, online shop-
ping, and health care. Because they often handle critical
data, it is especially important that these applications func-
tion correctly. However, database applications have pecu-
liar characteristics that can hinder the effectiveness of tra-
ditional testing approaches. One of these characteristics is
the way interactions occur between the application and its
underlying database(s). Most database applications dynam-
ically generate commands in the database language (usu-
ally, SQ L—Structured Query Language), pass these com-
mands to the database for execution, and process the re-
sults returned by the database. Traditional code-based cov-
erage criteria, such as statement or branch coverage, do
not specifically target these generated commands. There-
fore, even though they can reveal faults in the database ap-
plication’s code, they are often unable to reveal faults in
the database commands generated by the application. Sev-
eral researchers have proposed alternative criteria specifi-
cally targeted at database applications (e.g., [13, 17, 22]),

but none of these approaches focuses on the coverage of
dynamically-generated database commands.

To address this problem, we define a new test adequacy
criterion that is specifically targeted at the interactions be-
tween an application and its database. Our criterion is based
on coverage of all of the possible database command forms
that the application under test can generate. Intuitively,
command forms are database commands with placehold-
ers for parts that will be supplied at runtime (e.g., through
user input). To compute the set of command forms for
an application, we defined a technique that builds on two
previously-developed analyses [6, 12]. The technique takes
as input the code of the application under test and pro-
duces a conservative approximation of the possible com-
mand forms that the application can generate. The com-
mand forms are represented as a Deterministic F inite A u-
tomaton (D FA ) in which each complete path identifies a
unique command form. To efficiently collect and compute
coverage information, we leverage a technique for efficient
path profiling by Ball and Larus [1] and apply it to the D FA s
generated by our technique.

We implemented our approach in a prototype tool called
D I T T O (Database Interaction Testing T Ool). D I T T O lets de-
velopers assess the adequacy of an existing test suite with
respect to application-database interactions. D I T T O can also
help testers generate test cases by providing feedback about
which database command forms have not been exercised.

To evaluate our approach, we performed two preliminary
studies on a real database application using D I T T O. The
first study is a proof-of-concept study that shows that our
approach can be used to compute testing requirements and
collect coverage information. In the second study, we assess
the potential usefulness of our coverage criterion as com-
pared to a more traditional structural coverage criterion.
The contributions of this paper are:
• A new coverage criterion for database applications that

focuses on adequately exercising the interactions be-
tween an application and its underlying database.

• A n efficient approach for (1) computing testing require-
ments, (2) instrumenting an application and collecting
coverage information, (3) analyzing the coverage infor-
mation and providing feedback to testers.
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• The development of a tool, D I T T O, that implements our
approach.

• A preliminary study that shows the potential usefulness
and feasibility of the criterion.

2 Background and Terminology

A database application is typically a multi-tiered applica-
tion that interacts with one or more databases during execu-
tion. The top tier (UI tier) provides the user interface, the
middle tier (application tier) implements the application’s
logic, and the bottom tier (database tier) is the database. A t
runtime, the application interacts with the database by gen-
erating commands in the database language and using an
A PI to issue the commands to the database. The database
executes the commands and returns the results to the appli-
cation.

Because of their characteristics, database applications
can be considered meta-programs that generate object pro-
grams to be executed on the database. In this case, the
meta-language is the language used in the application tier—
typically, one or more general purpose programming lan-
guages such as Java, C, Perl, or PHP—and the object lan-
guage is usually the Structured Query Language (SQ L).
The meta-program creates database commands (i.e., the ob-
ject program) by combining hard-coded strings that con-
tain SQ L keywords, operators, and separators with literals
that can originate from the user or other sources of input.
In most applications, the creation of a database command
spans several statements and often involves multiple proce-
dures. We refer to the parts of a database command that
cannot be determined statically (e.g., substrings that corre-
spond to user input) as the indeterminate parts of the com-
mand.

Within the meta-program, there are statements that per-
form A PI calls to issue commands to the database. Using
the terminology introduced by K apfhammer and Soffa [13],
we call these statements database interaction points. De-
pending on the structure of the application and user input, a
specific database interaction point can issue different types
of database commands. To characterize the commands that
can be generated at a database interaction point, we use the
concept of database command form. A database command
form (or simply command form) is an equivalence class that
groups database commands that differ only in the possible
value of their indeterminate parts. Intuitively, one can think
of a command form as a template command string in which
the parts of the database command that are statically defined
by the application are specified, and the indeterminate parts
are marked by a placeholder. In Section 4.1 we provide a
concrete example of a database command form.

p u b l i c Re s u l t S e t
s e a r c hBo o k s ( S t r i n g s e a r c hS t r i n g , i n t s e a r c h T y p e ,

b o o l e a n s h owRa t i n g , b o o l e a n g r o u pB yRa t i n g ,
b o o l e a n g r o u pB y I SBN ) {

1 . S t r i n g [ ] s e a r c h F i e l d s = { " t i i t l e " , " a u t h o r " , " i s b n " } ;
2 . S t r i n g q u e r y S t r = " SE L ECT t i t l e , a u t h o r , d e s c r i p t i o n " ;
3 . i f ( s h owRa t i n g ) {
4 . q u e r y S t r + = " , a v g ( r a t i n g ) " ;

}
5 . q u e r y S t r + = " FROM b o o k s WHERE " ;
6 . i f ( s e a r c h T y p e = = 2 ) {
7 . q u e r y S t r + = s e a r c h F i e l d s [ s e a r c h T y p e ] + " = " +

s e a r c hS t r i n g ;
}

8 . e l s e {
9 . q u e r y S t r + = s e a r c h F i e l d s [ s e a r c h T y p e ] + " = ’ " +

s e a r c hS t r i n g + " ’ " ;
}

1 0 . i f ( g r o u pB y Ra t i n g ) {
1 1 . q u e r y S t r + = " GROUP BY r a t i n g " ;

}
1 2 . e l s e i f ( g r o u pB y I SBN ) {
1 3 . q u e r y S t r + = " GROUP BY i s b n " ;

}
1 4 . r e t u r n d a t a b a s e . e x e c u t eQu e r y ( q u e r y S t r ) ;

}

Figure 1. Excerpt of database application.

3 Motivating Example

Traditional code-based coverage criteria focus on discover-
ing errors in the application code and can result in very lim-
ited coverage of the SQ L commands that an application can
generate. To illustrate this limitation, F igure 1 shows a pos-
sible snippet of code from a database application. Method
s e a r c hBo o k s has one database interaction point (line 14)
and takes five inputs: a search string (s e a r c hS t r i n g),
an integer representing the search type (s e a r c h T y p e),
and a set of parameters for the search (s h owRa t i n g,
g r o u pB yRa t i n g, and g r o u pB y I SBN). The last four in-
puts determine how the hard-coded strings in the code will
be combined to produce the final command. The value of
the first parameter, s e a r c hS t r i n g, is directly embedded
in the database command.

This code compiles correctly, but it contains four faults
that manifest themselves in the object language. Certain
paths through the code generate illegal SQ L commands that
cause database errors and, ultimately, application failures.

1. A t line 1, field “title” is misspelled as “tiitle.” Because
“tiitle” is not a legal column name in the table, it will
cause an error if it is appended to the query at line 9.

2. If both of the appends at line 7 and line 11 are executed,
there will be no space delimiter between the value of
s e a r c hS t r i n g and the “ G RO UP B Y ” clause.

3. In SQ L, grouping functions such as a v g ( ) require
a corresponding “ G RO UP B Y ” clause in the query.
If s h owRa t i n g is true, but g r o u pB yRa t i n g and
g r o u pB y I SBN are not, this rule will be violated.

4. If the append at line 4 is not performed, there will be no
space delimiter between “description” and the “ F RO M ”
clause.
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These faults manifest themselves in the generated object-
program and not in the application code. Therefore, a tradi-
tional code-based adequacy criterion that requires the cov-
erage of the application code would only detect such faults
by chance. To illustrate, consider the following three test
cases:

s e a r c hBo o k s ( " 0 1 2 3 4 5 6 7 8 9 " , 2 , f a l s e , f a l s e , t r u e )
s e a r c hBo o k s ( " An y Au t h o r " , 1 , f a l s e , f a l s e , f a l s e )
s e a r c hBo o k s ( " An y Au t h o r " , 1 , t r u e , t r u e , f a l s e )

These test cases achieve 100% branch (and statement) cov-
erage of the example code, but reveal only one of the four
faults in the code—the fourth one. E ven using a stronger
criterion, such as the all-paths criterion, could fail to expose
all of the faults. A test suite could exercise all paths in the
example code, but if zero is never used as a search type,
the first fault would not be exposed. In the next section,
we explain how our approach can provide the tester with a
more effective criterion for testing interactions between ap-
plications and their underlying databases by focusing on the
object program instead of the meta-program.

4 A Novel Approach for Testing Database
Applications

Whereas traditional code-based adequacy criteria focus on
the database application code, our approach focuses on test-
ing the interactions between applications and underlying
databases. In this sense, our approach complements exist-
ing testing criteria and ensures that database applications
are more thoroughly tested. In this section, we discuss the
four components of our approach: (1) a new coverage crite-
rion for database applications, (2) a technique for comput-
ing testing requirements for the criterion, (3) a technique for
efficiently collecting coverage data, and (4) a technique for
analyzing and reporting coverage information.

4.1 Test i ng R eq u i re m en ts

The set of testing requirements for our criterion consists of
all of the command forms for all of the database interaction
points in the application under test. Because our goal is to
exercise the interactions between an application and its un-
derlying database, command forms represent a model of the
database application at the right level of abstraction—they
model all of the possible commands that the application can
generate and execute on the database. Therefore, the num-
ber of command forms exercised by a test suite is likely to
be a good indicator of the thoroughness of the testing of the
interactions between the application and its database.

For our example code in F igure 1, the set of testing re-
quirements consists of the command forms that can be ex-
ecuted at line 14, the only database interaction point. B y
looking at the different paths in the code, we can see that

it can generate eighteen distinct command forms. For the
sake of space, we only list one of them as an example:

SE L ECT t i t l e , a u t h o r , d e s c r i p t i o n , a v g ( r a t i n g )
FROM b o o k s WHERE a u t h o r = ’  ’ GROUP BY r a t i n g

We use symbol  as a placeholder for the indeterminate part
of the command (in this simple case, the part corresponding
to the value of s e a r c hS t r i n g). A ll other parts of the
database command, which can be determined statically, are
specified in the command form.

4.2 C o m p u t i ng C o m m a n d For ms

The main challenge when generating command forms is the
accurate identification of the possible SQ L commands that
could be issued at a given database interaction point. Be-
cause these commands are generated at runtime and often
inter-procedurally, this task requires the application of so-
phisticated program-analysis techniques. We perform this
task in three steps.

In the first step, we leverage the Java String A nal-
ysis (JSA ) developed by Christensen, Møller, and
Schwartzbach [6]. G iven a program P , a string variable1

st r , and a program point s, JSA analyzes P and computes
a Non-deterministic F inite A utomaton (N FA ) that encodes,
at the character level, all of the possible values that st r can
assume at s. JSA builds the N FA in a conservative way, by
taking into account all string operations on st r along pro-
gram paths leading to s. We apply JSA to the command
string variable used at each database interaction point and
obtain an N FA for each string.

In the second step, we refine the N FA s by using a tech-
nique from our previous work [12]. This technique parses
the character-level N FA s and produces corresponding SQ L-
level models by aggregating characters that correspond to
SQ L keywords and operators. Therefore, an SQ L-level
model is an N FA in which transitions correspond to SQ L to-
kens (keywords, operators, and delimiters) and input place-
holders, instead of single characters or character ranges (as
in the original JSA models).

In the third step, we compute the set of command forms
from the SQ L-level models. We first determinize and then
minimize the SQ L-level models to obtain what we call an
SQL command form model. B y construction, the set of com-
mand forms for a specific database interaction point is ex-
actly the set of all accepting paths in the command form
model. To keep the number of requirements finite and avoid
the need to enumerate all of the possible command forms,
we adapt the efficient path profiling approach proposed by
Ball and Larus [1]. Using this approach, we (1) transform
any cyclic models into directed acyclic graphs and (2) as-
sign integer edge values to a subset of the transitions in

1 We use the term string to refer to all of the Java string-related classes,
such as S T R I N G B U I L D E R, S T R I N G B U F F E R, C H A R A C T E R, and S T R I N G.
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Figure 2. Excerpt of the command form model for the code in Figure 1.

the models, such that the sum of the edge values along
each path is unique and the encoding is minimal. Since
each command form corresponds to a unique path in the
command form model, the unique integer associated with a
path can be used as the ID for the corresponding command
form. Moreover, because the path encoding is minimal, the
largest path ID gives the total number of requirements for
a database interaction point. This allows us to calculate the
total number of testing requirements and assign unique IDs
to requirements without having to enumerate all of the com-
mand forms.

A s an example, F igure 2 shows an excerpt of the com-
mand form model for the database interaction point of the
code in F igure 1. The command form shown in Section 4.1
corresponds to a specific path in this command form model.

The size of the command form model can, in the worst
case, be quadratic with respect to the size of the pro-
gram [6]. However, this worst case corresponds to a pro-
gram that, at every statement, modifies the command string
and has a branch. A s Tables 1 and 2 show, the models tend
to be linear with respect to the size of the application.

4.3 C over age C ollec t ion

To measure the adequacy of a test suite with respect to our
coverage criterion, we monitor the execution of the appli-
cation and determine which command forms are exercised.
We consider a command form associated with a database
interaction point to be covered if, during execution, an SQ L
command that corresponds to the command form is issued
at that point. A n SQ L command corresponds to a command
form if they differ only in the value of the command form’s
indeterminate part For example, the query:

SE L ECT t i t l e , a u t h o r , d e s c r i p t i o n , a v g ( r a t i n g )
FROM b o o k s WHERE a u t h o r = ’ E dw a r d Bu n k e r ’ GROUP
BY r a t i n g

would match the command form

SE L ECT t i t l e , a u t h o r , d e s c r i p t i o n , a v g ( r a t i n g )
FROM b o o k s WHERE a u t h o r = ’  ’ GROUP BY r a t i n g

because the former can be obtained from the latter by re-
placing the  placeholder with the string “ Edward Bunker.”

We collect coverage information by inserting a call to
a monitor immediately before each database interaction
point. A t runtime, the monitor is invoked with two pa-

rameters: the string that contains the actual SQ L command
about to be executed and a unique identifier for the inter-
action point. F irst, the monitor parses the command string
into a sequence of SQ L tokens. Second, using the inter-
action point’s identifier, it retrieves the corresponding SQ L
command form model. To find which command form cor-
responds to the command string, the monitor traverses the
model by matching SQ L tokens and transition labels un-
til it reaches an accepting state. (Label  can match any
number of tokens.) A t the end of the traversal, the path
followed corresponds to the command form covered by the
command string, and the ID of the command form is given
by the sum of the edge values associated with the transitions
in the traversed path. A t this point, the monitor adds to the
set of coverage data a pair consisting of the ID of the cov-
ered command form and the ID of the database interaction
point.

4.4 C over age A n al ysis a n d R ep or t i ng
G iven a set of coverage data, the database command form
coverage measure can be expressed as:

cover age = n u m be r o f co m m a n d f o r m s co v e r e d
t o t a l n u m be r o f co m m a n d f o r m s

The number of command forms covered is simply the
number of unique entries in the coverage data. The total
number of command forms is given, as discussed in Sec-
tion 4.2, by the sum of each database interaction point’s
maximum command form ID. A ll command form IDs that
do not appear in the coverage data correspond to command
forms that were not covered during testing. G iven an ID, we
can easily reconstruct the string representation of the corre-
sponding command form and show it to the testers. To do
this, we use the same approach used to reconstruct paths
from path IDs in Ball and Larus’s profiling approach [1].

5 The DITTO Tool

To automate the use of our testing approach and enable
experimentation, we designed and implemented a proto-
type tool called D I T T O (Database Interaction Testing T Ool).
D I T T O is implemented in Java, provides fully automated
support for all aspects of our approach, and can guide the
developer in testing database applications written in Java.
F igure 3 provides a high-level view of D I T T O ’s architecture.
A s the figure shows, D I T T O has three main operating modes
and consists of several modules.

4

42



! "#"$"%&
’ ( ( )*+"#*, -

. #/*- 01
’ - ")23&/

4 , 5&/"0&
6 , - *#, /

! "#$%& ’ $( ) *+$, $- ./%0 $- $+1."+

. 7 896 , : &)1
; &-&/"#, /

< =’ 1
6 , : &)%

>"#?1
’ - ")23&/

. 7 814 , @@"- : 1
=, /@16 , : &)%

4 , @@"- : 1
=, /@1

A-B, /@"#*, -

2- / .+) , $- .$+

A-%#/C@&- #&: 1
! "#"$"%&
’ ( ( )*+"#*, -

! "#"$"%&1
A- #&/"+#*, - 1
>, *- #1A! %

D&%#&/%

4 , 5&/"0&1
! "#"

3 "4$+15$%
6 - 1789$+

4 , 5&/"0&1
E&( , /#

! "#$%:

! "#$%;

Figure 3. High-level overview of D I T T O.

We expect that in a typical usage scenario D I T T O would
be used iteratively to support the testing process. Testers
would create a set of test cases for their application or use
a previously-developed test suite. Then they would use
D I T T O to instrument the application (Mode 1), run their test
cases against the application (Mode 2), and get a coverage
report (Mode 3). If testers are not satisfied with the level
of coverage achieved, D I T T O can provide detailed feedback
about which command forms were not covered. The feed-
back can include both a visual display of the command form
models, marked with coverage information, and a textual
list of uncovered command forms. Testers can use this in-
formation to guide the development of new test cases. A t
this point, D I T T O would be used again in Modes 2 and 3
to assess whether the additional test cases helped improved
coverage. A s in traditional testing, this process could con-
tinue until the testers are either satisfied with the coverage
results or run out of resources.

5.1 M o de 1: I nst r u m en t a t ion

In Mode 1 D I T T O generates the command form models and
instruments the code for collecting coverage data.

To generate the command form models, D I T T O statically
analyzes the database application under test, as discussed in
Section 4.2. For each database interaction point, the String
Analyzer uses the JSA library [6] to produce an N FA model
of the SQ L command string used at that point. The SQL-
Model Generator uses a modified version of our A M N E -
SI A tool [12] to process the N FA models and generate the
corresponding SQ L command form models. F inally, the
Path Analyzer takes as input the SQ L command form mod-
els, annotates them with the edge values for the path encod-
ing, and generates some command form information used
for bookkeeping.

To produce coverage data at runtime, the Instrumenter
modifies the code as described in Section 4.3. The In-
strumenter inserts a call to the Coverage Monitor imme-
diately before each database interaction point. The call to
the monitor provides as parameters (1) the string variable
that contains the SQ L command about to be executed and

(2) the unique identifier for the database interaction point.
The instrumentation is performed using bytecode rewriting
and leverages the B yte Code Engineering L ibrary (B C E L
– h t t p : / / j a k a r t a . a p a c h e . o r g / b c e l / ). For our
example application, the Instrumenter would modify the
database interaction point at line 14 (F igure 1) as follows:

. . .
mo n i t o r . l o g ( < i n t e r a c t i o n p o i n t I D> , q u e r y S t r ) ;
r e t u r n d a t a b a s e . e x e c u t eQu e r y ( q u e r y S t r ) ;
. . .

5.2 M o de 2: E xecu t ion

In Mode 2 D I T T O collects coverage data and records it
for later analysis. The instrumented database application
executes normally until it reaches a database interaction
point. A t this point, the string that is about to be submitted
as an SQ L command is sent to the Coverage Monitor to-
gether with the interaction point’s ID. The monitor traverses
the command form model for that interaction point, as de-
scribed in Section 4.3, and logs the pair consisting of the ID
of the covered command form and the ID of the database
interaction point.

5.3 M o de 3: A n al ysis a n d R ep or t i ng

In Mode 3 D I T T O computes the command form coverage
measure and provides feedback to the testers. The Cover-
age Analyzer uses the coverage data collected in Mode 2
and calculates the coverage as described in Section 4.4. The
test adequacy score alone does not give testers any informa-
tion about which parts of the code were insufficiently exer-
cised. To provide more detailed feedback, D I T T O also al-
lows testers to visually examine the command form models
and see which paths were not covered by their tests. This in-
formation is visualized by coloring and annotating covered
paths in the models. The testers can also list the command
forms that were not covered in the model in textual format.
Both of these feedback mechanisms provide testers with an
intuitive way to understand coverage results and can guide
further test-case development.
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6 Current Limitations

Stored procedures. A common development practice is to
encapsulate sequences of SQ L commands and save them
in the database as stored procedures. Developers can then
issue a SQ L command that invokes the stored procedure,
possibly with some input parameters. Our approach mod-
els calls to stored procedures just like any other command
issued to the database, but does not consider the SQ L com-
mands within a stored procedure (as they are stored in the
database and not explicitly generated by the application).
In other words, our current approach treats stored proce-
dures as atomic instructions. If needed, the coverage cri-
terion could be expanded to include the contents of stored
procedures.

External fragments. In some applications, developers in-
put constant strings from external sources, such as files,
and use these strings to build SQ L commands. These ex-
ternal strings are typically SQ L command fragments that
contain SQ L keywords and operators (in contrast with user
input, which typically consists of string or numeric liter-
als). This situation does not cause any conceptual problem
for our approach, as an indeterminate part of a command
form can match the tokens that correspond to external frag-
ments. From a practical standpoint, however, simply con-
sidering external fragments as indeterminate parts may de-
crease the effectiveness of the criterion. (For an extreme
example, consider the case in which all SQ L commands are
simply read from external files.) This limitation is mostly
implementation related: we could extend our technique so
that developers can specify which external fragments are
used in their application, and the technique would account
for these fragments when building the SQ L command form
model. We have not implemented this solution yet because
none of the applications that we have examined so far uses
external fragments.

Infeasibility. Infeasibility is one of the main problems for
structural coverage criteria. Computing structural cover-
age requirements for an application typically involves some
form of static analysis of the application’s code. In general,
because determining the reachability of a statement for a
given program is an undecidable problem [20], static anal-
ysis tends to generate spurious requirements that cannot be
satisfied. The presence of unsatisfiable requirements in a
criterion makes it impossible to reach 100% coverage for
that criterion and limits its usefulness. Infeasibility can af-
fect the command form criterion by causing the presence
of spurious command forms that do not correspond to any
command that could be generated by the application. In-
tuitively, this problem should occur primarily because the
string analysis may add to the model strings that are gen-
erated along infeasible paths. Therefore, we expect the in-
feasibility problem to affect us to a similar extent in which

Servlet LO C # Methods
Header 130 9
A dvSearch 253 13
Default 693 26
CategoriesGrid 309 18
CardTypesGrid 270 17
OrdersRecord 463 20
MembersInfo 488 21
CardTypesRecord 368 18
Footer 129 9
Login 290 14
EditorialCatGrid 310 18
EditorialsGrid 325 18
ShoppingCartRecord 412 19
Registration 515 20
CategoriesRecord 368 18
EditorialsRecord 441 19
Books 534 22
EditorialCatRecord 365 18
MembersRecord 618 22
BookMaint 514 21
MyInfo 649 19
BookDetail 921 25
A dminBooks 609 22
OrdersGrid 602 20
ShoppingCart 705 21
A dminMenu 429 11
MembersGrid 578 20

Table 1. Summary information about Book-
store’s servlets.

it affects path-based coverage criteria. A s discussed in Sec-
tion 9, we plan to investigate infeasibility issues for our cri-
terion through empirical evaluation.

Analysis limitations. Our approach relies on the ability of
the underlying string analysis to build the initial N FA mod-
els for the database interaction points. Imprecision (i.e.,
over-approximation) in the string analysis could limit the
effectiveness of our criterion. For example, a worst case
scenario in which the analysis generates an automaton that
accepts any strings would result in command-form models
that are covered by any test case that reaches the corre-
sponding database interaction point. Note that manual in-
spections showed that imprecision was not an issue for any
of the models that we generated in our evaluation.

7 Evaluation
In our evaluation, we performed two studies. The first one is
a proof of concept study in which we used D I T T O on a real
database application to assess whether it was able to suc-
cessfully generate test requirements and measure coverage.
The second study explores the effectiveness of traditional
coverage criteria in generating test suites that are adequate
with respect to command-form coverage.
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Servlet # DIP # Edges # States % Cov.
Header 0 0 0 N/A
A dvSearch 1 16 17 N/A
Default 1 406 407 13%
CategoriesGrid 1 48 49 N/A
CardTypesGrid 1 48 49 N/A
OrdersRecord 2 371 259 < 1%
MembersInfo 2 201 172 7%
CardTypesRecord 2 191 143 2%
Footer 1 1 2 N/A
Login 1 67 58 4%
EditorialCatGrid 1 48 49 N/A
EditorialsGrid 1 157 158 N/A
ShoppingCartRecord 2 296 210 N/A
Registration 3 478 309 < 1%
CategoriesRecord 2 191 143 5%
EditorialsRecord 2 527 345 < 2%
Books 1 7928 6267 N/A
EditorialCatRecord 2 191 143 2%
MembersRecord 3 1282 772 < 1%
BookMaint 2 1163 681 < 1%
MyInfo 2 588 354 N/A
BookDetail 4 1211 854 1%
A dminBooks 1 344 258 N/A
OrdersGrid 1 326 265 N/A
ShoppingCart 2 154 140 N/A
A dminMenu 1 1 2 N/A
MembersGrid 1 235 207 N/A

Table 2. Information on the SQL command
form models for Bookstore.

For both studies, we used a database application called
Bookstore (available at h t t p : / / www . g o t o c o d e . c om).
Bookstore implements an online bookstore and uses Java
servlets to implement the U I and application tiers. Table 1
shows summary information about each of the servlets in
the application. For each servlet (Servlet), the table shows
its size (LO C) and its number of methods (# Methods).

7.1 S t u d y 1
The first study provides a proof of concept evaluation of
D I T T O by showing that it can work on a specific applica-
tion. To achieve this goal, we used D I T T O on Bookstore to
generate testing requirements and measure command form
coverage for a set of test cases. D I T T O successfully com-
puted the test requirements for each of the database interac-
tion points and instrumented all of the servlets. The entire
process of extracting the models took less than five minutes
on a Pentium III machine with 1G B of memory running
the G N U/L inux Operating System. We then deployed the
instrumented servlets and ran a previously developed test
suite against them.

Table 2 summarizes the results of the study. For each
servlet, the table shows the number of database interaction
points it contained (#DIP), the total number of states and

transitions in the models (#States and #Edges), and the per-
centage of command-form coverage achieved during testing
(%Cov.). Some of the servlets were not exercised by the test
suite, and their coverage measure is reported as “ N/A .”

The test suite that we used in this study was developed
in previous work [12] (and also used in related work [16])
to target specific security issues. It was not developed to
achieve coverage, and we did not try to improve it because
the goal of this study was not to test the subject application,
but to demonstrate a successful use of D I T T O. E ven un-
der these premises, the results provide some initial evidence
that command-form coverage cannot be trivially achieved,
and that specialized test cases may be needed to suitably
exercise the interactions between applications and their un-
derlying databases.

7.2 S t u d y 2
The second study addresses the research question: Does
command-form coverage provide for a more thorough test-
ing of database applications than alternative traditional ap-
proaches? For this study, we selected branch coverage as
the representative traditional criterion because it is widely
used. A typical way to address this question would be to (1)
create a number of branch-adequate test suites, (2) create
the same number of adequate test suites for the command-
form coverage criterion, (3) run both sets of test suites on
several versions of an application with seeded faults, and
(4) compare the fault-detection capability of both sets of
test suites.

However, there is a significant technical challenge that
complicates this type of evaluation: the lack of an effective
way to automatically seed different types of SQ L-related er-
rors. Whereas there are mutant generation tools that can be
used to seed traditional faults in programs, there are no such
tools for SQ L-related faults. Seeding the errors by hand
or building an ad-hoc tool are less than ideal options be-
cause they would introduce problems of bias. A lternatively,
collecting real database-command related faults from open-
source projects would be a good solution, but may involve
an extensive search and still result in too few data points to
draw significant conclusions.

Due to these issues, we decided to use an indirect and
approximated method to compare the effectiveness of our
criterion with the effectiveness of the traditional branch-
coverage criterion. The method that we use is to compute an
upper bound to the number of command forms that could be
exercised by a branch-adequate test suite and compare this
number to the total number of command forms for the ap-
plication. A higher total number of command forms would
be an indication that branch coverage (and possibly other
traditional testing criteria) may not adequately test inter-
actions between the application and the database, and that
command-form coverage may be needed. For instance, con-
sider the example code in F igure 1. A s discussed in Sec-
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tion 3, we could achieve 100% branch coverage of that code
with just three test cases, each of which would exercise
only one command form. Because there are eighteen possi-
ble command forms, it is clear that the considered branch-
adequate test suite would not thoroughly exercise the SQ L
commands generated by the application.

The total number of command forms for an application
is computed by D I T T O, as discussed in Section 4.2. To cal-
culate an upper bound to the number of command forms
that would be executed in a servlet by a branch-adequate
test suite, we use the cyclomatic complexity of the servlet.
The cyclomatic complexity is an upper bound to the mini-
mal number of test cases needed to achieve 100% branch
coverage of a program [19]. A n analysis of the servlets
used in the study revealed that no test case can execute a
database interaction point more than once (i.e., no database
interaction point is in the body of a loop). Therefore, if we
conservatively assume that each test case exercises a dif-
ferent command form, we can use the cyclomatic complex-
ity as an upper bound to the number of possible command
forms that a minimal, branch-adequate test suite would ex-
ecute. In practice, however, such an assumption could
vastly overestimate the number of command forms exer-
cised by a branch-adequate test suite because many paths
in the code do not actually generate a database command.
To obtain a better estimate, we must compute the cyclo-
matic complexity on only the subset of the servlet code
that is involved with creating, modifying, and executing
database commands. We thus generate an executable back-
ward slice [18] for each command string variable at each
database interaction point using J A B A 2 and compute the cy-
clomatic complexity only for the subset of the servlet in the
slice. Because the J A B A -based slicer that we use is still a
prototype and requires a considerable amount of human in-
tervention, in the study we consider only a subset of the
Bookstore servlets.

The results of our analysis are shown in Table 3. For
each servlet considered, we report the number of database
interaction points (#DIP), the number of command forms
(# Command Forms), and the cyclomatic complexity of the
servlet’s slice. A s the data shows, the number of command
forms is considerably higher than the cyclomatic complex-
ity in several cases, and the average number of command
forms per database interaction point (253) is almost five
times the average cyclomatic complexity (57). Because the
numbers we used in the study are estimates, and we only
considered a small number of servlets, we cannot draw any
definitive conclusion from the study. Nevertheless, this pre-
liminary study indicates that command-form coverage may
result in a more thorough testing of database interactions
than traditional coverage criteria. These results encourage
further research and a more extensive empirical evaluation.

2 h t t p : / / www . c c . g a t e c h . e d u / a r i s t o t l e / T o o l s / j a b a . h t m l

Servlet # DIP # Command Cyclomatic
Forms Complexity

MyInfo 1 6 136
BookDetail 4 1583 150
A dminBooks 1 617 31
OrdersGrid 1 394 26
ShoppingCart 2 20 28
A dminMenu 1 1 6
MembersGrid 1 162 21

Table 3. Results of the evaluation.

8 Related Work

The problem of ensuring the correctness of database ap-
plications has been approached in several different ways.
The approaches most closely related to ours are those that
also propose new test adequacy criteria for database appli-
cations. Within this group, there are two types of crite-
ria, those that focus on data-flow and those that focus on
the structure of the SQ L commands sent to the database.
Suárez-Cabal and Tuya [17] propose a structural coverage
criterion that requires the coverage of all of the conditions
in a SQ L command’s “ F RO M,” “ W H E RE,” and “JO IN ”
clauses. This criterion is analogous to the multiple condi-
tion coverage criterion [5], but applied to SQ L clauses in-
stead of code predicates. This work differs from ours in that
it focuses on SQ L commands that are completely statically
defined and only considers coverage of a subset of the SQ L
language, namely, conditions in queries’ clauses. In con-
trast, our technique considers coverage of all types of SQ L
commands, including dynamically-constructed ones. A lso
similar to our criterion are the criteria proposed by Will-
mor and Embury [22]. In particular, they propose the all
database operations criterion, which requires the execution
of all of a program’s database interaction points. Our pro-
posed criterion subsumes this criterion because it requires
not only the execution of each database interaction point,
but also the coverage of all of the command forms that can
be generated at that point.

K apfhammer and Soffa [13] propose a set of data-flow
test adequacy criteria based on definition-use coverage of
database entities. These entities can be defined at differ-
ent levels of granularity that include the database, relation,
attribute, record, and attribute-value level. These criteria
parallel conventional data-flow testing criteria [10], but are
defined and evaluated based on database entities instead of
program variables. Willmor and Embury [22] refine these
criteria and expand them to accommodate database transac-
tions. Both approaches differ from ours in that they focus
on covering all of the definitions and uses of database enti-
ties instead of the different command forms. The data-flow
criteria do not subsume command form coverage because
at a database interaction point it is possible to have several
command forms that exercise the same set of database en-
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tities. In this case, satisfying the data-flow criteria would
not satisfy command form coverage. The data flow crite-
ria are complementary to ours; they target faults related to
the definition and use of database entities, whereas our ap-
proach targets errors in the database commands generated
by a database application.

The work of Chan and Cheung [2] is similar to ours
in that it aims to thoroughly test database applications by
taking into account the generated SQ L commands. Their
approach translates SQ L commands into Relational A lge-
bra Expressions (R A E), converts the R A E into the meta-
language of the application, and replaces the SQ L command
in the application with the generated code. A fter the trans-
formation, they use standard white-box testing criteria to
test, albeit indirectly, the SQ L commands. To illustrate their
approach, consider the case in which the developer issues a
SQ L JO I N command. They would first convert the SQ L
command into equivalent statements in the meta-language.
In this case, the JO I N would be translated into two nested
f o r loops (the JO I N command is similar to a cross prod-
uct between two database tables). Testers would then create
test cases to properly exercise the additional f o r loops in
the code. (Using our approach, the JO I N command would
simply be counted as an additional command form to be
covered.) Chan and Cheung’s approach enforces a thorough
testing of database applications, but it has several limita-
tions when compared to our approach. F irst, and most im-
portantly, the translation of the SQ L commands into R A E
requires that the SQ L commands be statically defined as
constant strings. This is a fundamental limitation because it
precludes the usage of the technique on the many database
applications that build command strings by appending dif-
ferent substrings along non-trivial control-flow paths. Our
approach does not have this problem because the static anal-
ysis can typically account for all possible commands, in-
cluding dynamically-constructed ones. A nother limitation
is that the R A E is less expressive than SQ L, so certain SQ L
commands cannot be translated and will not be adequately
tested. We are not affected by this issue because we mea-
sure coverage directly on the database command forms.

A nother proposed approach is to perform static ver-
ification of the possible SQ L commands. Christensen,
Møller, and Schwartzbach introduce the Java String A nal-
ysis (JSA ) [6] and use it to extract non-deterministic finite
automata that represent the potential SQ L commands that
could be generated at a given database interaction point.
They then intersect the automata with a regular language ap-
proximation of SQ L to determine if the commands are syn-
tactically correct. Gould, Su, and Devanbu propose JD B C
Checker [11], which builds on JSA and adds type analysis
to statically verify that dynamically generated commands
are type-safe. This type of verification is powerful, but does
not necessarily eliminate the need for testing. F irst, it is not

always possible to check SQ L commands statically (e.g., in
cases where the application allows keywords or operators
to be specified at runtime). Second, there are limitations in
the type of errors that can be detected by these techniques.
For instance, consider the third error in our example from
Section 3. This type of fault would not be detected by Chris-
tensen, Møller, and Schwartzbach’s approach because their
syntax checking is not expressive enough to represent the
constraints violated by the error. A lthough our approach
uses similar models as these techniques, it uses them for
measuring the thoroughness of a test suite with respect to
command forms instead of for verifying them. Our tech-
nique, although less complete than the ones based on static
verification, does not have the limitations of these tech-
niques and may reveal faults that these techniques cannot
reveal.

Other approaches, such as SQ L D O M [14] and Safe
Query Objects [7], propose to change the way developers
construct SQ L commands. Instead of having developers
create SQ L commands using string concatenation, they of-
fer a specialized A PI that handles all aspects of creating and
issuing SQ L command strings. The main benefit of these
approaches is that they can enforce a more disciplined us-
age of SQ L, and thus prevent many errors. However, these
approaches require developers to learn a new A PI and de-
velopment paradigm and, most importantly, cannot be eas-
ily applied to legacy code.

F inally, other related work focuses on test case genera-
tion for database applications and regression testing. A l-
though related to our approach, they have different goals
and are mostly orthogonal to our work. A G E N D A [3, 4, 9]
is a framework for automatic generation and execution of
unit tests for database applications that is loosely based
on the category partition testing method [15]. A G E N D A
takes as input information about the logical database model
(e.g., schema information, database states, and logical con-
straints) and combines it with tester input to generate test
cases for the database. Zhang, X u, and Cheung propose a
technique for generating database instances to support test-
ing [24]. The technique uses a constraint solver to iden-
tify which values a database should contain to ensure that
the different conditions and predicates in an application’s
SQ L commands will be exercised. Similarly, Willmor and
Embury [23] propose a mechanism that allows developers
to specify database states that are relevant for a test suite
and can then appropriately populate the database. Daou and
colleagues use a firewall-based approach for regression test-
ing of database applications [8], while Willmor and Embury
propose regression testing based on definition-use analysis
of the SQ L commands in an application [21].

9 Conclusion
In this paper, we addressed a common problem that arises
when testing database applications: how to adequately test
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the interactions between an application and its underlying
database. To address this problem, we introduced an ap-
proach based on a new test adequacy criterion called com-
mand form coverage. This criterion requires the coverage
of all of the command forms that a given application can
issue to its database.

We also presented D I T T O, a prototype tool that imple-
ments our approach. D I T T O generates testing requirements
for our criterion, measures the adequacy of a test suite with
respect to the criterion, and provides feedback to testers
about which requirements were not covered during testing.

F inally, we presented two preliminary studies. The first
one is a feasibility study that shows that D I T T O can success-
fully extract testing requirements and measure coverage for
a real database application. The second study provides an-
alytical evidence that traditional code-based testing criteria
may be inadequate in the case of database applications. The
results of the studies, although preliminary, are encouraging
and motivate further research.

There are several possible directions for future work.
First, we will perform a more extensive empirical evalua-
tion of our approach. We will identify additional subjects
and fault information for these subjects by performing a
survey of existing database applications. We will then use
these subjects to (1) assess the effectiveness of our criterion
in revealing database-application-specific errors, (2) further
compare our criterion and traditional code-based criteria,
and (3) study infeasibility and other analysis-related issues
for our approach. Second, we will investigate whether we
can improve the effectiveness of our approach by leverag-
ing information about the database used by the application
under test (e.g., the database schema). Finally, we will in-
vestigate the application of our technique to other domains,
such as dynamic web applications.
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ABSTRACT
A M N E SI A is a tool that detects and prevents SQL injec-
tion attacks by combining static analysis and runtime mon-
itoring. Empirical evaluation has shown that A M N E SI A is
both e  ective and e  cient against SQL injection.

C a t ego r ies a n d S u b jec t D escr i p t o rs: D.2.5 [Software Engi-
neering]: Testing and Debugging—Monitors ;
G ene r al Te r ms: Security, Verification

K e y wo r ds: SQ L injection, static analysis, runtime monitoring

1. INTRODUCTION
Companies and organizations use Web applications to pro-

vide a broad range of services to users, such as on-line bank-
ing and shopping. Because the databases underlying Web
applications often contain confidential information (e.g., cus-
tomer and financial records), these applications are a fre-
quent target for attacks. One particular type of attack,
SQL injection, can give attackers a way to gain access to
the databases underlying Web applications and, with that,
the power to leak, modify, or even delete information that is
stored on these databases. In recent years, both commercial
and government institutions have been victims of SQLIAs.

SQL injection vulnerabilities are due to insu  cient input
validation. More precisely, SQ L Injection Attack s (SQ LI As)
can occur when a Web application receives user input and
uses it to build a database query without adequately vali-
dating it. An attacker can take advantage of a vulnerable
application by providing it with input that contains em-
bedded malicious SQL commands that are then executed
by the database. Although the vulnerabilities that lead to
SQLIAs are well understood, they continue to be a signif-
icant problem because of a lack of e  ective techniques to
detect and prevent them. Conceptually, SQLIAs could be
prevented by a more rigorous application of defensive coding
techniques [10]. In practice, however, these techniques have
been less than e  ective in addressing the problem because
they are susceptible to human errors and expensive to apply
on large legacy code-bases.

In our demonstration, we present A M N E SI A (Analysis
and Monitoring for NEutralizing SQL-Injection Attacks), a
tool that implements our technique for detecting and pre-
venting SQLIAs [7, 8]. A M N E SI A uses a model-based ap-
proach that is specifically designed to target SQLIAs and
combines static analysis and runtime monitoring. It uses
static analysis to analyze the Web-application code and au-
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ICSE’06,May 20–28, 2006, Shanghai, China.
ACM 1-59593-085-X/06/0005.

tomatically build a model of the legitimate queries that the
application can generate. At runtime, the technique moni-
tors all dynamically-generated queries and checks them for
compliance with the statically-generated model. When the
technique detects a query that violates the model, it classi-
fies the query as an attack, prevents it from accessing the
database, and logs the attack information.

2. EXAMPLE OF SQL INJECTION
To illustrate how an SQLIA occurs, we introduce a simple

example that we will use throughout the paper. The exam-
ple is based on a servlet, show . j sp, for which a possible
implementation is shown in Figure 1.

pub l i c c l a s s Show e x t ends H t t pSe r v l e t {
. . .

1 . pub l i c Re su l t Se t ge t Us e r I n f o ( S t r i ng l og i n , S t r i ng pa s swo r d ) {
2 . Conne c t i on conn = D r i v e r Manage r . ge t Conne c t i on ( " MyDB " ) ;
3 . S t a t emen t s t m t = conn . c r e a t eS t a t emen t ( ) ;
4 . S t r i ng que r yS t r i ng = " " ;

5 . que r yS t r i ng = " SELECT i n f o FROM us e r Tab l e WHERE " ;
6 . i f ( ( ! l og i n . equa l s ( " " ) ) && ( ! pa s swo r d . equa l s ( " " ) ) ) {
7 . que r yS t r i ng += " l og i n= ’ " + l og i n +

" ’ AND pa s s= ’ " + pa s swo r d + " ’ " ;
8 . } e l s e {
9 . que r yS t r i ng+= " l og i n= ’ gue s t ’ " ;

}
10 . Re su l t Se t t empSe t = s t m t . e x e cu t e ( que r yS t r i ng ) ;
11 . r e t u r n t empSe t ;

}
. . .

}
F igure 1: E xample ser vlet.

Method ge t Use r I n f o is called with a login and password
provided by the user, in string format, through a Web form.
If both l og i n and passwo r d are empty, the method submits
the following query to the database:
SELECT i n f o FROM us e r s WHERE l og i n= ’ gue s t ’

Conversely, if the user submits l og i n and passwo r d, the
method embeds the submitted credentials in the query. For
instance, if a user submits l og i n and passwo r d as “doe” and
“xy z,” the servlet dynamically builds the query:
SELECT i n f o FROM us e r s WHERE l og i n= ’ doe ’ AND pa s s= ’ x y z ’

A Web application that uses this servlet would be vulnerable
to SQLIAs. For example, if a user enters “ ’ OR 1=1 - - ” and
“”, instead of “doe” and “xy z”, the resulting query is:
SELECT i n f o FROM us e r s WHERE l og i n= ’ ’ OR 1=1 - - ’ AND pa s s= ’ ’

The database interprets everything after the WHERE token
as a conditional statement, and the inclusion of the “OR 1=1”
clause turns this conditional into a tautology. (The charac-
ters “ - - ” mark the beginning of a comment, so everything
after them is ignored.) As a result, the database would re-
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F igure 2: S Q L -quer y model for the ser vlet in F igure 1.

turn information about all users. Introducing a tautology is
only one of the many possible ways to perform SQLIAs, and
variations can have a wide range of e  ects, including mod-
ification and destruction of database tables. We provide a
thorough survey of SQLIAs in [9].

3. THE A M N E SI A TOOL
In this section we summarize our technique, implemented

in the A M N E SI A tool, and then discuss the main charac-
teristics of the tool implementation. A detailed description
of the approach is provided in [7].

3.1 Underlying Technique
Our technique uses a combination of static analysis and

runtime monitoring to detect and prevent SQLIAs. It con-
sists of four main steps.

I dentify hotspots: Scan the application code to identify
hotspots—points in the application code that issue SQL
queries to the underlying database.

B uild S Q L -quer y models: For each hotspot, build a model
that represents all of the possible SQL queries that
may be generated at that hotspot. An SQ L-query
model is a non-deterministic finite-state automaton in
which the transition labels consist of SQL tokens, de-
limiters, and placeholders for string values.

I nst rument A pplication: At each hotspot in the appli-
cation, add calls to the runtime monitor.

R untime monitoring: At runtime, check the dynamically-
generated queries against the SQL-query model and
reject and report queries that violate the model.

3.1.1 Identify Hotspots
This step performs a simple scanning of the application

code to identify hotspots. For the example servlet in Fig-
ure 1, the set of hotspots would contain a single element,
the statement at line 10.

3.1.2 Build SQL-Query Models
To build the SQL-query model for each hotspot, we first

compute all of the possible values for the hotspot’s query
string. To do this, we leverage the Java String Analy-
sis (JSA) library developed by Christensen, Møller, and
Schwartzbach [3]. The JSA library produces a non-determini-
stic finite automaton (NDFA) that expresses, at the char-
acter level, all the possible values the considered string can
assume. The string analysis is conservative, so the NDFA
for a string is an overestimate of all the possible values of
the string.

To produce the final SQL-query model, we perform an
analysis of the NDFA and transform it into a model in
which all of the transitions represent semantically mean-
ingful tokens in the SQL language. This operation creates
an NDFA in which all of the transitions are annotated with
SQL keywords, operators, or literal values. (This step is
configurable to recognize di  erent dialects of SQL.) In our

model, we mark transitions that correspond to externally
defined strings with the symbol  .

To illustrate, Figure 2 shows the SQL-query model for the
hotspot in the example provided in Section 2. The model
reflects the two di  erent query strings that can be generated
by the code depending on the branch followed after the i f
statement at line 6 (Figure 1). In the model,  marks the
position of the user-supplied inputs in the query string.

3.1.3 Instrument Application
In this step, we instrument the application code with calls

to a monitor that checks the queries at runtime. For each
hotspot, we insert a call to the monitor before the call to
the database. The monitor is invoked with two parameters:
the query string that is about to be submitted and a unique
identifier for the hotspot. The monitor uses the identifier to
retrieve the SQL-query model for that hotspot.

Figure 3 shows how the example application would be
instrumented by our technique. The hotspot, originally at
line 10 in Figure 1, is now guarded by a call to the monitor
at line 10a.

. . .
10a . i f ( mon i t o r . a c c ep t s ( < ho t spo t I D > , que r yS t r i ng ) )

{
10b . Re su l t Se t t empSe t = s t m t . e x e cu t e ( que r yS t r i ng ) ;
11 . r e t u r n t empSe t ;

}
. . .

F igure 3: E xample hotspot after inst rumentation.

3.1.4 Runtime Monitoring
At runtime, the application executes normally until it

reaches a hotspot. At this point, the query string is sent to
the runtime monitor. The monitor parses the query string
into a sequence of tokens according to the specific SQL di-
alect considered. Figure 4 shows how the last two queries
discussed in Section 2 would be parsed during runtime mon-
itoring.

After parsing the query, the runtime monitor checks whether
the query violates the hotspot’s SQL-query model. To do
this, the runtime monitor checks whether the model accepts
the sequence of tokens in the query string. When matching
the query string against the SQL-query model, a token that
corresponds to a numeric or string constant (including the
empty string,  ) can match either an identical literal value
or a  label. If the model does not accept the sequence of
tokens, the monitor identifies the query as an SQLIA.

To illustrate runtime monitoring, consider again the queries
from Section 2, shown in Figure 4. The tokens in query (a)
specify a set of transitions that terminate in an accepting
state. Therefore, query (a) is executed on the database.
Conversely, query (b) contains extra tokens that prevent it
from reaching an accepting state and is recognized as an
SQLIA.
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( a ) SELECT i n f o FROM use r s WHERE l og i n= ’ doe ’ AND pass= ’ xy z ’

SELECT info FROM users WHERE login = ’ doe ’ AND pass = ’ xyz ’

( b ) SELECT i n f o FROM use r s WHERE l og i n= ’ ’ OR 1=1 - - ’ AND pass= ’ ’

SELECT info FROM users WHERE login = ’  ’ OR 1 = 1 - - ’ AND pass = ’  ’

F igure 4: E xample of parsed runtime queries.

3.2 Implementation
In our demonstration, we show an implementation of our

technique, A M N E SI A , that works for Java-based Web ap-
plications. The technique is fully automated, requiring only
the Web application as input, and requires no extra runtime
environment support beyond deploying the application with
the A M N E SI A library. We developed the tool in Java and
its implementation consists of three modules:
A nalysis module. This module implements Steps 1 and
2 of our technique. It inputs a Java Web application and
outputs a list of hotspots and a SQL-query model for each
hotspot. For the implementation of this module, we lever-
aged the Java String Analysis library [3]. The analysis mod-
ule is able to analyze Java Servlets and JSP pages.
I nst rumentation module. This module implements Step
3 of our technique. It inputs a Java Web application and
a list of hotspots and instruments each hotspot with a call
to the runtime monitor. We implemented this module using
InsE C T J, a generic instrumentation and monitoring frame-
work for Java [19].
R untime-monitoring module. This module implements
Step 4 of our technique. The module takes as input a query
string and the ID of the hotspot that generated the query,
retrieves the SQL-query model for that hotspot, and checks
the query against the model.
Figure 5 shows a high-level overview of A M N E SI A . In the
static phase, the Instrumentation Module and the Analy-
sis Module take as input a Web application and produce
(1) an instrumented version of the application and (2) an
SQL-query model for each hotspot in the application. In
the dynamic phase, the Runtime-Monitoring Module checks
the dynamic queries while users interact with the Web ap-
plication. If a query is identified as an attack, it is blocked
and reported.

To report an attack, A M N E SI A throws an exception and
encodes information about the attack in the exception. If
developers want to access the information at runtime, they
can leverage the exception-handling mechanism of the lan-
guage and integrate their handling code into the application.
Having this attack information available at runtime allows
developers to react to an attack right after it is detected and
develop an appropriate customized response. Currently, the
information reported by A M N E SI A includes the time of the
attack, the location of the hotspot that was exploited, the
attempted-attack query, and the part of the query that was
not matched against the model.

3.3 Assumptions and Limitations
Our tool makes one primary assumption regarding the

applications it targets—that queries are created by manip-

F igure 5: H igh-level over view of A M N E SI A .

ulating strings in the application. In other words, A M N E -
SI A assumes that the developer creates queries by combin-
ing hard-coded strings and variables using operations such
as concatenation, appending, and insertion. Although this
assumption precludes the use of A M N E SI A on some appli-
cations (e.g., applications that externalize all query-related
strings in files), it is not an overly restrictive assumption.
Moreover, it is an implementation-related assumption that
can be eliminated with suitable engineering.

In certain situations our technique can generate false pos-
itives and false negatives. False positives can occur when
the string analysis is not precise enough. For example, if the
analysis cannot determine that a hard-coded string in the
application is a keyword, it could assume that it is an input-
related value and erroneously place a  in the SQL query
model. At runtime, the original keyword would not match
the placeholder for the variable, and A M N E SI A would flag
the corresponding query as an SQLIA. False negatives can
occur when the constructed SQL query model contains spu-
rious queries and the attacker is able to generate an injection
attack that matches one of the spurious queries.

To assess the practical implications of these limitations,
we conducted an extensive empirical evaluation of our tech-
nique. The evaluation used A M N E SI A to protect seven ap-
plications while the applications where sub jected to thou-
sands of attacks and legal accesses. A M N E SI A ’s perfor-
mance in the evaluation was excellent: it did not generate
any false positives or negatives [7].
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4. RELATEDWORK
To address the problem of SQLIAs, researchers have pro-

posed a wide range of techniques. Two recent techniques [2,
20] use an approach similar to ours, in that they also build
models of legitimate queries and enforce conformance with
the models at runtime. Other techniques include intrusion
detection [21], black-box testing [11], static code checkers [5,
12, 13, 22], Web proxy filters [18], new query-development
paradigms [4, 15], instruction set randomization [1], and
taint-based approaches [6, 14, 16, 17].

While e  ective, these approaches have limitations that af-
fect their ability to provide general detection and preven-
tion capabilities against SQLIAs [9]. Furthermore, some
of these approaches are di  cult to deploy. Static analy-
sis techniques, such as [5, 22], address only a subset of
the problem. Other solutions require developers to learn
and use new APIs [4, 15], modify their application source
code [2, 20], deploy their applications using customized run-
time environments [1, 15, 16, 18], or accept limitations on
the completeness and precision of the technique [11, 21].
Techniques based solely on static analysis, such as [12, 13],
do not achieve the same levels of precision as dynamic tech-
niques. Finally, defensive coding [10], while o  ering an e  ec-
tive solution to SQLIAs, has shown to be di  cult to apply
e  ectively in practice.

5. SUMMARY
In this paper, we have presented A M N E SI A , a fully auto-

mated tool for protecting Web applications against SQLIAs.
Our tool uses static analysis to build a model of the legiti-
mate queries an application can generate and monitors the
application at runtime to ensure that all generated queries
match the statically-generated model. In [7], we have pre-
sented an extensive evaluation that uses commercial appli-
cations and real-world SQLIAs to evaluate the e  ectiveness
of A M N E SI A . The results of this evaluation show that A M -
N E SI A can be very e  ective and e  cient in detecting and
preventing SQLIAs.
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ABSTRACT
SQL injection attacks pose a serious security threat to Web appli-
cations: they allow attackers to obtain unrestricted access to the
databases underlying the applications and to the potentially sensi-
tive information these databases contain. Although researchers and
practitioners have proposed various methods to address the SQL
injection problem, current approaches either fail to address the full
scope of the problem or have limitations that prevent their use and
adoption. Many researchers and practitioners are familiar with only
a subset of the wide range of techniques available to attackers who
are trying to take advantage of SQL injection vulnerabilities. As
a consequence, many solutions proposed in the literature address
only some of the issues related to SQL injection. To address this
problem, we present an extensive review of the different types of
SQL injection attacks known to date. For each type of attack, we
provide descriptions and examples of how attacks of that type could
be performed. We also present and analyze existing detection and
prevention techniques against SQL injection attacks. For each tech-
nique, we discuss its strengths and weaknesses in addressing the
entire range of SQL injection attacks.

1. INTRODUCTION
SQL injection vulnerabilities have been described as one of the

most serious threats for Web applications [3, 11]. Web applica-
tions that are vulnerable to SQL injection may allow an attacker to
gain complete access to their underlying databases. Because these
databases often contain sensitive consumer or user information, the
resulting security violations can include identity theft, loss of con-
fidential information, and fraud. In some cases, attackers can even
use an SQL injection vulnerability to take control of and corrupt the
system that hosts the Web application. Web applications that are
vulnerable to SQL Injection Attacks (SQLIAs) are widespread—a
study by Gartner Group on over 300 Internet Web sites has shown
that most of them could be vulnerable to SQLIAs. In fact, SQLIAs
have successfully targeted high-profile victims such as Travelocity,
FTD.com, and Guess Inc.
SQL injection refers to a class of code-injection attacks in which

data provided by the user is included in an SQL query in such a
way that part of the user’s input is treated as SQL code. By lever-
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aging these vulnerabilities, an attacker can submit SQL commands
directly to the database. These attacks are a serious threat to any
Web application that receives input from users and incorporates it
into SQL queries to an underlying database. Most Web applications
used on the Internet or within enterprise systems work this way and
could therefore be vulnerable to SQL injection.
The cause of SQL injection vulnerabilities is relatively simple

and well understood: insufficient validation of user input. To ad-
dress this problem, developers have proposed a range of coding
guidelines (e.g., [18]) that promote defensive coding practices, such
as encoding user input and validation. A rigorous and systematic
application of these techniques is an effective solution for prevent-
ing SQL injection vulnerabilities. However, in practice, the appli-
cation of such techniques is human-based and, thus, prone to errors.
Furthermore, fixing legacy code-bases that might contain SQL in-
jection vulnerabilities can be an extremely labor-intensive task.
Although recently there has been a great deal of attention to

the problem of SQL injection vulnerabilities, many proposed solu-
tions fail to address the full scope of the problem. There are many
types of SQLIAs and countless variations on these basic types. Re-
searchers and practitioners are often unaware of the myriad of dif-
ferent techniques that can be used to perform SQLIAs. Therefore,
most of the solutions proposed detect or prevent only a subset of
the possible SQLIAs. To address this problem, we present a com-
prehensive survey of SQL injection attacks known to date. To com-
pile the survey, we used information gathered from various sources,
such as papers, Web sites, mailing lists, and experts in the area. For
each attack type considered, we give a characterization of the at-
tack, illustrate its effect, and provide examples of how that type of
attack could be performed. This set of attack types is then used
to evaluate state of the art detection and prevention techniques and
compare their strengths and weaknesses. The results of this com-
parison show the effectiveness of these techniques.
The rest of this paper is organized as follows: Section 2 provides

background information on SQLIAs and related concepts. Sec-
tion 4 defines and presents the different attack types. Sections 5
and 6 review and evaluate current techniques against SQLIAs. Fi-
nally, we provide summary and conclusions in Section 7.

2. BACKGROUND ON SQLIAS
Intuitively, an SQL Injection Attack (SQLIA) occurs when an at-

tacker changes the intended effect of an SQL query by inserting
new SQL keywords or operators into the query. This informal defi-
nition is intended to include all of the variants of SQLIAs reported
in literature and presented in this paper. Interested readers can refer
to [35] for a more formal definition of SQLIAs. In the rest of this
section, we define two important characteristics of SQLIAs that we
use for describing attacks: injection mechanism and attack intent.
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2.1 Injection Mechanisms
Malicious SQL statements can be introduced into a vulnerable

application using many different input mechanisms. In this section,
we explain the most common mechanisms.
Injection through user input: In this case, attackers inject SQL

commands by providing suitably crafted user input. A Web appli-
cation can read user input in several ways based on the environment
in which the application is deployed. In most SQLIAs that target
Web applications, user input typically comes from form submis-
sions that are sent to the Web application via HTTP GET or POST
requests [14]. Web applications are generally able to access the
user input contained in these requests as they would access any
other variable in the environment.
Injection through cookies: Cookies are files that contain state

information generated by Web applications and stored on the client
machine. When a client returns to a Web application, cookies can
be used to restore the client’s state information. Since the client
has control over the storage of the cookie, a malicious client could
tamper with the cookie’s contents. If a Web application uses the
cookie’s contents to build SQL queries, an attacker could easily
submit an attack by embedding it in the cookie [8].
Injection through server variables: Server variables are a col-

lection of variables that contain HTTP, network headers, and envi-
ronmental variables. Web applications use these server variables in
a variety of ways, such as logging usage statistics and identifying
browsing trends. If these variables are logged to a database without
sanitization, this could create an SQL injection vulnerability [30].
Because attackers can forge the values that are placed in HTTP and
network headers, they can exploit this vulnerability by placing an
SQLIA directly into the headers. When the query to log the server
variable is issued to the database, the attack in the forged header is
then triggered.
Second-order injection: In second-order injections, attackers seed

malicious inputs into a system or database to indirectly trigger an
SQLIA when that input is used at a later time. The objective of
this kind of attack differs significantly from a regular (i.e., first-
order) injection attack. Second-order injections are not trying to
cause the attack to occur when the malicious input initially reaches
the database. Instead, attackers rely on knowledge of where the
input will be subsequently used and craft their attack so that it oc-
curs during that usage. To clarify, we present a classic example
of a second order injection attack (taken from [1]). In the exam-
ple, a user registers on a website using a seeded user name, such
as “admin’ -- ”. The application properly escapes the single
quote in the input before storing it in the database, preventing its
potentially malicious effect. At this point, the user modifies his or
her password, an operation that typically involves (1) checking that
the user knows the current password and (2) changing the pass-
word if the check is successful. To do this, the Web application
might construct an SQL command as follows:
queryString="UPDATE users SET password=’" + newPassword +

"’ WHERE userName=’" + userName + "’ AND password=’" +

oldPassword + "’"

newPassword and oldPassword are the new and old pass-
words, respectively, and userName is the name of the user cur-
rently logged-in (i.e., ‘‘admin’--’’). Therefore, the query string
that is sent to the database is (assume that newPassword and
oldPas-sword are “newpwd” and“oldpwd”):
UPDATE users SET password=’newpwd’

WHERE userName= ’admin’--’ AND password=’oldpwd’

Because “--” is the SQL comment operator, everything after it is

ignored by the database. Therefore, the result of this query is that
the database changes the password of the administrator (“admin”)
to an attacker-specified value.
Second-order injections can be especially difficult to detect and

prevent because the point of injection is different from the point
where the attack actually manifests itself. A developer may prop-
erly escape, type-check, and filter input that comes from the user
and assume it is safe. Later on, when that data is used in a dif-
ferent context, or to build a different type of query, the previously
sanitized input may result in an injection attack.

2.2 Attack Intent
Attacks can also be characterized based on the goal, or intent,

of the attacker. Therefore, each of the attack type definitions that
we provide in Section 4 includes a list of one or more of the attack
intents defined in this section.
Identifying injectable parameters: The attacker wants to probe a

Web application to discover which parameters and user-input fields
are vulnerable to SQLIA.
Performing database finger-printing: The attacker wants to dis-

cover the type and version of database that a Web application is
using. Certain types of databases respond differently to different
queries and attacks, and this information can be used to “finger-
print” the database. Knowing the type and version of the database
used by a Web application allows an attacker to craft database-
specific attacks.
Determining database schema: To correctly extract data from

a database, the attacker often needs to know database schema in-
formation, such as table names, column names, and column data
types. Attacks with this intent are created to collect or infer this
kind of information.
Extracting data: These types of attacks employ techniques that

will extract data values from the database. Depending on the type
of the Web application, this information could be sensitive and
highly desirable to the attacker. Attacks with this intent are the
most common type of SQLIA.
Adding or modifying data: The goal of these attacks is to add or

change information in a database.
Performing denial of service: These attacks are performed to

shut down the database of a Web application, thus denying service
to other users. Attacks involving locking or dropping database ta-
bles also fall under this category.
Evading detection: This category refers to certain attack tech-

niques that are employed to avoid auditing and detection by system
protection mechanisms.
Bypassing authentication: The goal of these types of attacks is

to allow the attacker to bypass database and application authenti-
cation mechanisms. Bypassing such mechanisms could allow the
attacker to assume the rights and privileges associated with another
application user.
Executing remote commands: These types of attacks attempt to

execute arbitrary commands on the database. These commands can
be stored procedures or functions available to database users.
Performing privilege escalation: These attacks take advantage

of implementation errors or logical flaws in the database in order to
escalate the privileges of the attacker. As opposed to bypassing au-
thentication attacks, these attacks focus on exploiting the database
user privileges.

3. EXAMPLE APPLICATION
Before discussing the various attack types, we introduce an ex-

ample application that contains an SQL injection vulnerability. We
use this example in the next section to provide attack examples.
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1. String login, password, pin, query
2. login = getParameter("login");
3. password = getParameter("pass");
3. pin = getParameter("pin");
4. Connection conn.createConnection("MyDataBase");
5. query = "SELECT accounts FROM users WHERE login=’" +
6. login + "’ AND pass=’" + password +
7. "’ AND pin=" + pin;
8. ResultSet result = conn.executeQuery(query);
9. if (result!=NULL)
10. displayAccounts(result);
11. else
12. displayAuthFailed();

Figure 1: Excerpt of servlet implementation.

Note that the example refers to a fairly simple vulnerability that
could be prevented using a straightforward coding fix. We use this
example simply for illustrative purposes because it is easy to un-
derstand and general enough to illustrate many different types of
attacks.
The code excerpt in Figure 1 implements the login functionality

for an application. It is based on similar implementations of login
functionality that we have found in existing Web-based applica-
tions. The code in the example uses the input parameters login,
pass, and pin to dynamically build an SQL query and submit it
to a database.
For example, if a user submits login, password, and pin as “doe,”

“secret,” and “123,” the application dynamically builds and
submits the query:
SELECT accounts FROM users WHERE

login=’doe’ AND pass=’secret’ AND pin=123

If the login, password, and pin match the corresponding entry in
the database, doe’s account information is returned and then dis-
played by function displayAccounts(). If there is no match
in the database, function displayAuthFailed() displays an
appropriate error message.

4. SQLIA TYPES
In this section, we present and discuss the different kinds of

SQLIAs known to date. For each attack type, we provide a descrip-
tive name, one or more attack intents, a description of the attack,
an attack example, and a set of references to publications and Web
sites that discuss the attack technique and its variations in greater
detail.
The different types of attacks are generally not performed in iso-

lation; many of them are used together or sequentially, depending
on the specific goals of the attacker. Note also that there are count-
less variations of each attack type. For space reasons, we do not
present all of the possible attack variations but instead present a
single representative example.

Tautologies
Attack Intent: Bypassing authentication, identifying injectable pa-
rameters, extracting data.
Description: The general goal of a tautology-based attack is to in-
ject code in one or more conditional statements so that they always
evaluate to true. The consequences of this attack depend on how the
results of the query are used within the application. The most com-
mon usages are to bypass authentication pages and extract data. In
this type of injection, an attacker exploits an injectable field that is
used in a query’s WHERE conditional. Transforming the conditional
into a tautology causes all of the rows in the database table targeted
by the query to be returned. In general, for a tautology-based attack
to work, an attacker must consider not only the injectable/vulner-

able parameters, but also the coding constructs that evaluate the
query results. Typically, the attack is successful when the code ei-
ther displays all of the returned records or performs some action if
at least one record is returned.
Example: In this example attack, an attacker submits “ ’ or 1=1 - -
” for the login input field (the input submitted for the other fields is
irrelevant). The resulting query is:
SELECT accounts FROM users WHERE

login=’’ or 1=1 -- AND pass=’’ AND pin=

The code injected in the conditional (OR 1=1) transforms the en-
tire WHERE clause into a tautology. The database uses the condi-
tional as the basis for evaluating each row and deciding which ones
to return to the application. Because the conditional is a tautology,
the query evaluates to true for each row in the table and returns
all of them. In our example, the returned set evaluates to a non-
null value, which causes the application to conclude that the user
authentication was successful. Therefore, the application would
invoke method displayAccounts() and show all of the ac-
counts in the set returned by the database.
References: [1, 28, 21, 18]

Illegal/Logically Incorrect Queries
Attack Intent: Identifying injectable parameters, performing database
finger-printing, extracting data.
Description: This attack lets an attacker gather important informa-
tion about the type and structure of the back-end database of a Web
application. The attack is considered a preliminary, information-
gathering step for other attacks. The vulnerability leveraged by this
attack is that the default error page returned by application servers
is often overly descriptive. In fact, the simple fact that an error
messages is generated can often reveal vulnerable/injectable pa-
rameters to an attacker. Additional error information, originally in-
tended to help programmers debug their applications, further helps
attackers gain information about the schema of the back-end database.
When performing this attack, an attacker tries to inject statements
that cause a syntax, type conversion, or logical error into the database.
Syntax errors can be used to identify injectable parameters. Type
errors can be used to deduce the data types of certain columns or to
extract data. Logical errors often reveal the names of the tables and
columns that caused the error.
Example: This example attack’s goal is to cause a type conversion
error that can reveal relevant data. To do this, the attacker injects
the following text into input field pin: “convert(int,(select top 1
name from sysobjects where xtype=’u’))”. The resulting query is:
SELECT accounts FROM users WHERE login=’’ AND

pass=’’ AND pin= convert (int,(select top 1 name from

sysobjects where xtype=’u’))

In the attack string, the injected select query attempts to extract the
first user table (xtype=’u’) from the database’s metadata table
(assume the application is using Microsoft SQL Server, for which
the metadata table is called sysobjects). The query then tries
to convert this table name into an integer. Because this is not a le-
gal type conversion, the database throws an error. For Microsoft
SQL Server, the error would be: ”Microsoft OLE DB Provider for
SQL Server (0x80040E07) Error converting nvarchar value ’Cred-
itCards’ to a column of data type int.”
There are two useful pieces of information in this message that aid
an attacker. First, the attacker can see that the database is an SQL
Server database, as the error message explicitly states this fact. Sec-
ond, the error message reveals the value of the string that caused the
type conversion to occur. In this case, this value is also the name of
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the first user-defined table in the database: “CreditCards.” A simi-
lar strategy can be used to systematically extract the name and type
of each column in the database. Using this information about the
schema of the database, an attacker can then create further attacks
that target specific pieces of information.
References: [1, 22, 28]

Union Query
Attack Intent: Bypassing Authentication, extracting data.
Description: In union-query attacks, an attacker exploits a vulner-
able parameter to change the data set returned for a given query.
With this technique, an attacker can trick the application into re-
turning data from a table different from the one that was intended
by the developer. Attackers do this by injecting a statement of
the form: UNION SELECT <rest of injected query>.
Because the attackers completely control the second/injected query,
they can use that query to retrieve information from a specified ta-
ble. The result of this attack is that the database returns a dataset
that is the union of the results of the original first query and the
results of the injected second query.
Example: Referring to the running example, an attacker could in-
ject the text “’ UNION SELECT cardNo from CreditCards where
acctNo=10032 - -” into the login field, which produces the follow-
ing query:
SELECT accounts FROM users WHERE login=’’ UNION

SELECT cardNo from CreditCards where

acctNo=10032 -- AND pass=’’ AND pin=

Assuming that there is no login equal to “”, the original first query
returns the null set, whereas the second query returns data from the
“CreditCards” table. In this case, the database would return column
“cardNo” for account “10032.” The database takes the results of
these two queries, unions them, and returns them to the application.
In many applications, the effect of this operation is that the value
for “cardNo” is displayed along with the account information.
References: [1, 28, 21]

Piggy-Backed Queries
Attack Intent: Extracting data, adding or modifying data, perform-
ing denial of service, executing remote commands.
Description: In this attack type, an attacker tries to inject additional
queries into the original query. We distinguish this type from others
because, in this case, attackers are not trying to modify the original
intended query; instead, they are trying to include new and distinct
queries that “piggy-back” on the original query. As a result, the
database receives multiple SQL queries. The first is the intended
query which is executed as normal; the subsequent ones are the
injected queries, which are executed in addition to the first. This
type of attack can be extremely harmful. If successful, attackers
can insert virtually any type of SQL command, including stored
procedures,1 into the additional queries and have them executed
along with the original query. Vulnerability to this type of attack
is often dependent on having a database configuration that allows
multiple statements to be contained in a single string.
Example: If the attacker inputs “’; drop table users - -” into the pass
field, the application generates the query:
SELECT accounts FROM users WHERE login=’doe’ AND

pass=’’; drop table users -- ’ AND pin=123

After completing the first query, the database would recognize the
1Stored procedures are routines stored in the database and run by
the database engine. These procedures can be either user-defined
procedures or procedures provided by the database by default.

query delimiter (“;”) and execute the injected second query. The
result of executing the second query would be to drop table users,
which would likely destroy valuable information. Other types of
queries could insert new users into the database or execute stored
procedures. Note that many databases do not require a special char-
acter to separate distinct queries, so simply scanning for a query
separator is not an effective way to prevent this type of attack.
References: [1, 28, 18]

Stored Procedures
Attack Intent: Performing privilege escalation, performing denial
of service, executing remote commands.
Description: SQLIAs of this type try to execute stored procedures
present in the database. Today, most database vendors ship databases
with a standard set of stored procedures that extend the function-
ality of the database and allow for interaction with the operating
system. Therefore, once an attacker determines which backend-
database is in use, SQLIAs can be crafted to execute stored proce-
dures provided by that specific database, including procedures that
interact with the operating system.
It is a common misconception that using stored procedures to

write Web applications renders them invulnerable to SQLIAs. De-
velopers are often surprised to find that their stored procedures can
be just as vulnerable to attacks as their normal applications [18, 24].
Additionally, because stored procedures are often written in special
scripting languages, they can contain other types of vulnerabilities,
such as buffer overflows, that allow attackers to run arbitrary code
on the server or escalate their privileges [9].

CREATE PROCEDURE DBO.isAuthenticated
@userName varchar2, @pass varchar2, @pin int

AS
EXEC("SELECT accounts FROM users
WHERE login=’" +@userName+ "’ and pass=’" +@password+

"’ and pin=" +@pin);
GO

Figure 2: Stored procedure for checking credentials.
Example: This example demonstrates how a parameterized stored

procedure can be exploited via an SQLIA. In the example, we as-
sume that the query string constructed at lines 5, 6 and 7 of our
example has been replaced by a call to the stored procedure de-
fined in Figure 2. The stored procedure returns a true/false value to
indicate whether the user’s credentials authenticated correctly. To
launch an SQLIA, the attacker simply injects “ ’ ; SHUTDOWN; -
-” into either the userName or password fields. This injection
causes the stored procedure to generate the following query:
SELECT accounts FROM users WHERE

login=’doe’ AND pass=’ ’; SHUTDOWN; -- AND pin=

At this point, this attack works like a piggy-back attack. The first
query is executed normally, and then the second, malicious query
is executed, which results in a database shut down. This example
shows that stored procedures can be vulnerable to the same range
of attacks as traditional application code.
References: [1, 4, 9, 10, 24, 28, 21, 18]

Inference
Attack Intent: Identifying injectable parameters, extracting data,
determining database schema.
Description: In this attack, the query is modified to recast it in the
form of an action that is executed based on the answer to a true/-
false question about data values in the database. In this type of in-
jection, attackers are generally trying to attack a site that has been
secured enough so that, when an injection has succeeded, there is
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no usable feedback via database error messages. Since database
error messages are unavailable to provide the attacker with feed-
back, attackers must use a different method of obtaining a response
from the database. In this situation, the attacker injects commands
into the site and then observes how the function/response of the
website changes. By carefully noting when the site behaves the
same and when its behavior changes, the attacker can deduce not
only whether certain parameters are vulnerable, but also additional
information about the values in the database. There are two well-
known attack techniques that are based on inference. They allow
an attacker to extract data from a database and detect vulnerable
parameters. Researchers have reported that with these techniques
they have been able to achieve a data extraction rate of 1B/s [2].
Blind Injection: In this technique, the information must be in-

ferred from the behavior of the page by asking the server true/-
false questions. If the injected statement evaluates to true, the site
continues to function normally. If the statement evaluates to false,
although there is no descriptive error message, the page differs sig-
nificantly from the normally-functioning page.
Timing Attacks: A timing attack allows an attacker to gain infor-

mation from a database by observing timing delays in the response
of the database. This attack is very similar to blind injection, but
uses a different method of inference. To perform a timing attack, at-
tackers structure their injected query in the form of an if/then state-
ment, whose branch predicate corresponds to an unknown about
the contents of the database. Along one of the branches, the at-
tacker uses a SQL construct that takes a known amount of time to
execute, (e.g. the WAITFOR keyword, which causes the database to
delay its response by a specified time). By measuring the increase
or decrease in response time of the database, the attacker can infer
which branch was taken in his injection and therefore the answer to
the injected question.
Example: Using the code from our running example, we illustrate
two ways in which Inference based attacks can be used. The first
of these is identifying injectable parameters using blind injection.
Consider two possible injections into the login field. The first being
“legalUser’ and 1=0 - -” and the second, “legalUser’ and 1=1 - -”.
These injections result in the following two queries:
SELECT accounts FROM users WHERE login=’legalUser’

and 1=0 -- ’ AND pass=’’ AND pin=0

SELECT accounts FROM users WHERE login=’legalUser’

and 1=1 -- ’ AND pass=’’ AND pin=0

Now, let us consider two scenarios. In the first scenario, we have
a secure application, and the input for login is validated correctly.
In this case, both injections would return login error messages, and
the attacker would know that the login parameter is not vulnera-
ble. In the second scenario, we have an insecure application and
the login parameter is vulnerable to injection. The attacker submits
the first injection and, because it always evaluates to false, the ap-
plication returns a login error message. At this point however, the
attacker does not know if this is because the application validated
the input correctly and blocked the attack attempt or because the
attack itself caused the login error. The attacker then submits the
second query, which always evaluates to true. If in this case there is
no login error message, then the attacker knows that the attack went
through and that the login parameter is vulnerable to injection.
The second way inference based attacks can be used is to per-

form data extraction. Here we illustrate how to use a Timing based
inference attack to extract a table name from the database. In this
attack, the following is injected into the login parameter:
‘‘legalUser’ and ASCII(SUBSTRING((select top 1 name from

sysobjects),1,1)) > X WAITFOR 5 --’’.

This produces the following query:
SELECT accounts FROM users WHERE login=’legalUser’ and

ASCII(SUBSTRING((select top 1 name from sysobjects),1,1))

> X WAITFOR 5 -- ’ AND pass=’’ AND pin=0

In this attack the SUBSTRING function is used to extract the first
character of the first table’s name. Using a binary search strategy,
the attacker can then ask a series of questions about this character.
In this case, the attacker is asking if the ASCII value of the char-
acter is greater-than or less-than-or-equal-to the value of X. If the
value is greater, the attacker knows this by observing an additional
5 second delay in the response of the database. The attacker can
then use a binary search by varying the value of X to identify the
value of the first character.
References: [34, 2]

Alternate Encodings
Attack Intent: Evading detection.
Description: In this attack, the injected text is modified so as to
avoid detection by defensive coding practices and also many au-
tomated prevention techniques. This attack type is used in con-
junction with other attacks. In other words, alternate encodings do
not provide any unique way to attack an application; they are sim-
ply an enabling technique that allows attackers to evade detection
and prevention techniques and exploit vulnerabilities that might not
otherwise be exploitable. These evasion techniques are often nec-
essary because a common defensive coding practice is to scan for
certain known “bad characters,” such as single quotes and comment
operators.
To evade this defense, attackers have employed alternate meth-

ods of encoding their attack strings (e.g., using hexadecimal, ASCII,
and Unicode character encoding). Common scanning and detection
techniques do not try to evaluate all specially encoded strings, thus
allowing these attacks to go undetected. Contributing to the prob-
lem is that different layers in an application have different ways of
handling alternate encodings. The application may scan for cer-
tain types of escape characters that represent alternate encodings
in its language domain. Another layer (e.g., the database) may
use different escape characters or even completely different ways
of encoding. For example, a database could use the expression
char(120) to represent an alternately-encoded character “x”,
but char(120) has no special meaning in the application lan-
guage’s context. An effective code-based defense against alternate
encodings is difficult to implement in practice because it requires
developers to consider of all of the possible encodings that could
affect a given query string as it passes through the different appli-
cation layers. Therefore, attackers have been very successful in
using alternate encodings to conceal their attack strings.
Example: Because every type of attack could be represented us-
ing an alternate encoding, here we simply provide an example (see
[18]) of how esoteric an alternatively-encoded attack could appear.
In this attack, the following text is injected into the login field:
“legalUser’; exec(0x73687574646f776e) - - ”. The resulting query
generated by the application is:
SELECT accounts FROM users WHERE login=’legalUser’;

exec(char(0x73687574646f776e)) -- AND pass=’’ AND pin=

This example makes use of the char() function and of ASCII
hexadecimal encoding. The char() function takes as a parameter
an integer or hexadecimal encoding of a character and returns an
instance of that character. The stream of numbers in the second part
of the injection is the ASCII hexadecimal encoding of the string
“SHUTDOWN.” Therefore, when the query is interpreted by the
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database, it would result in the execution, by the database, of the
SHUTDOWN command.
References: [1, 18]

5. PREVENTION OF SQLIAS
Researchers have proposed a wide range of techniques to address

the problem of SQL injection. These techniques range from devel-
opment best practices to fully automated frameworks for detecting
and preventing SQLIAs. In this section, we review these proposed
techniques and summarize the advantages and disadvantages asso-
ciated with each technique.

5.1 Defensive Coding Practices
The root cause of SQL injection vulnerabilities is insufficient

input validation. Therefore, the straightforward solution for elim-
inating these vulnerabilities is to apply suitable defensive coding
practices. Here, we summarize some of the best practices proposed
in the literature for preventing SQL injection vulnerabilities.
Input type checking: SQLIAs can be performed by injecting

commands into either a string or numeric parameter. Even a sim-
ple check of such inputs can prevent many attacks. For example,
in the case of numeric inputs, the developer can simply reject any
input that contains characters other than digits. Many developers
omit this kind of check by accident because user input is almost
always represented in the form of a string, regardless of its content
or intended use.
Encoding of inputs: Injection into a string parameter is often ac-

complished through the use of meta-characters that trick the SQL
parser into interpreting user input as SQL tokens. While it is possi-
ble to prohibit any usage of these meta-characters, doing so would
restrict a non-malicious user’s ability to specify legal inputs that
contain such characters. A better solution is to use functions that
encode a string in such a way that all meta-characters are specially
encoded and interpreted by the database as normal characters.
Positive pattern matching: Developers should establish input val-

idation routines that identify good input as opposed to bad input.
This approach is generally called positive validation, as opposed to
negative validation, which searches input for forbidden patterns or
SQL tokens. Because developers might not be able to envision ev-
ery type of attack that could be launched against their application,
but should be able to specify all the forms of legal input, positive
validation is a safer way to check inputs.
Identification of all input sources: Developers must check all in-

put to their application. As we outlined in Section 2.1, there are
many possible sources of input to an application. If used to con-
struct a query, these input sources can be a way for an attacker to in-
troduce an SQLIA. Simply put, all input sources must be checked.

Although defensive coding practices remain the best way to pre-
vent SQL injection vulnerabilities, their application is problematic
in practice. Defensive coding is prone to human error and is not as
rigorously and completely applied as automated techniques. While
most developers do make an effort to code safely, it is extremely
difficult to apply defensive coding practices rigorously and cor-
rectly to all sources of input. In fact, many of the SQL injection
vulnerabilities discovered in real applications are due to human er-
rors: developers forgot to add checks or did not perform adequate
input validation [20, 23, 33]. In other words, in these applications,
developers were making an effort to detect and prevent SQLIAs,
but failed to do so adequately and in every needed location. These
examples provide further evidence of the problems associated with
depending on developer’s use of defensive coding.

Moreover, approaches based on defensive coding are weakened
by the widespread promotion and acceptance of so-called “pseudo-
remedies” [18]. We discuss two of the most commonly-proposed
pseudo-remedies. The first of such remedies consists of checking
user input for SQL keywords, such as “FROM,” “WHERE,” and
“SELECT,” and SQL operators, such as the single quote or com-
ment operator. The rationale behind this suggestion is that the pres-
ence of such keywords and operators may indicate an attempted
SQLIA. This approach clearly results in a high rate of false posi-
tives because, in many applications, SQL keywords can be part of a
normal text entry, and SQL operators can be used to express formu-
las or even names (e.g., O’Brian). The second commonly suggested
pseudo-remedy is to use stored procedures or prepared statements
to prevent SQLIAs. Unfortunately, stored procedures and prepared
statements can also be vulnerable to SQLIAs unless developers rig-
orously apply defensive coding guidelines. Interested readers may
refer to [1, 25, 28, 29] for examples of how these pseudo-remedies
can be subverted.

5.2 Detection and Prevention Techniques
Researchers have proposed a range of techniques to assist devel-

opers and compensate for the shortcomings in the application of
defensive coding.

BlackBoxTesting. Huang and colleagues [19] propose WAVES,
a black-box technique for testing Web applications for SQL injec-
tion vulnerabilities. The technique uses a Web crawler to identify
all points in a Web application that can be used to inject SQLIAs.
It then builds attacks that target such points based on a specified list
of patterns and attack techniques. WAVES then monitors the ap-
plication’s response to the attacks and uses machine learning tech-
niques to improve its attack methodology. This technique improves
over most penetration-testing techniques by using machine learn-
ing approaches to guide its testing. However, like all black-box
and penetration testing techniques, it cannot provide guarantees of
completeness.

Static Code Checkers. JDBC-Checker is a technique for stati-
cally checking the type correctness of dynamically-generated SQL
queries [12, 13]. This technique was not developed with the intent
of detecting and preventing general SQLIAs, but can nevertheless
be used to prevent attacks that take advantage of type mismatches
in a dynamically-generated query string. JDBC-Checker is able to
detect one of the root causes of SQLIA vulnerabilities in code—
improper type checking of input. However, this technique would
not catch more general forms of SQLIAs because most of these
attacks consist of syntactically and type correct queries.
Wassermann and Su propose an approach that uses static analysis

combined with automated reasoning to verify that the SQL queries
generated in the application layer cannot contain a tautology [37].
The primary drawback of this technique is that its scope is lim-
ited to detecting and preventing tautologies and cannot detect other
types of attacks.

Combined Static and Dynamic Analysis. AMNESIA is
a model-based technique that combines static analysis and runtime
monitoring [17, 16]. In its static phase, AMNESIA uses static anal-
ysis to build models of the different types of queries an application
can legally generate at each point of access to the database. In its
dynamic phase, AMNESIA intercepts all queries before they are
sent to the database and checks each query against the statically-
built models. Queries that violate the model are identified as SQLIAs
and prevented from executing on the database. In their evaluation,
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the authors have shown that this technique performs well against
SQLIAs. The primary limitation of this technique is that its suc-
cess is dependent on the accuracy of its static analysis for building
query models. Certain types of code obfuscation or query develop-
ment techniques could make this step less precise and result in both
false positives and false negatives.
Similarly, two recent related approaches, SQLGuard [6] and SQL-

Check [35] also check queries at runtime to see if they conform to
a model of expected queries. In these approaches, the model is ex-
pressed as a grammar that only accepts legal queries. In SQLGuard,
the model is deduced at runtime by examining the structure of the
query before and after the addition of user-input. In SQLCheck,
the model is specified independently by the developer. Both ap-
proaches use a secret key to delimit user input during parsing by
the runtime checker, so security of the approach is dependent on
attackers not being able to discover the key. Additionally, the use
of these two approaches requires the developer to either rewrite
code to use a special intermediate library or manually insert special
markers into the code where user input is added to a dynamically
generated query.

Taint BasedApproaches. WebSSARI detects input-validation-
related errors using information flow analysis [20]. In this ap-
proach, static analysis is used to check taint flows against precon-
ditions for sensitive functions. The analysis detects the points in
which preconditions have not been met and can suggest filters and
sanitization functions that can be automatically added to the ap-
plication to satisfy these preconditions. The WebSSARI system
works by considering as sanitized input that has passed through a
predefined set of filters. In their evaluation, the authors were able
to detect security vulnerabilities in a range of existing applications.
The primary drawbacks of this technique are that it assumes that
adequate preconditions for sensitive functions can be accurately
expressed using their typing system and that having input passing
through certain types of filters is sufficient to consider it not tainted.
For many types of functions and applications, this assumption is too
strong.
Livshits and Lam [23] use static analysis techniques to detect

vulnerabilities in software. The basic approach is to use informa-
tion flow techniques to detect when tainted input has been used to
construct an SQL query. These queries are then flagged as SQLIA
vulnerabilities. The authors demonstrate the viability of their tech-
nique by using this approach to find security vulnerabilities in a
benchmark suite. The primary limitation of this approach is that it
can detect only known patterns of SQLIAs and, because it uses a
conservative analysis and has limited support for untainting opera-
tions, can generate a relatively high amount of false positives.
Several dynamic taint analysis approaches have been proposed.

Two similar approaches by Nguyen-Tuong and colleagues [31] and
Pietraszek and Berghe [32] modify a PHP interpreter to track pre-
cise per-character taint information. The techniques use a context
sensitive analysis to detect and reject queries if untrusted input has
been used to create certain types of SQL tokens. A common draw-
back of these two approaches is that they require modifications to
the runtime environment, which affects portability. A technique by
Haldar and colleagues [15] and SecuriFly [26] implement a sim-
ilar approach for Java. However, these techniques do not use the
context sensitive analysis employed by the other two approaches
and track taint information on a per-string basis (as opposed to per-
character). SecuriFly also attempts to sanitize query strings that
have been generated using tainted input. However, this sanitiza-
tion approach does not help if injection is performed into numeric
fields. In general, dynamic taint-based techniques have shown a lot

of promise in their ability to detect and prevent SQLIAs. The pri-
mary drawback of these approaches is that identifying all sources
of tainted user input in highly-modular Web applications and accu-
rately propagating taint information is often a difficult task.

NewQueryDevelopmentParadigms. Two recent approaches,
SQL DOM [27] and Safe Query Objects [7], use encapsulation
of database queries to provide a safe and reliable way to access
databases. These techniques offer an effective way to avoid the
SQLIA problem by changing the query-building process from an
unregulated one that uses string concatenation to a systematic one
that uses a type-checked API. Within their API, they are able to sys-
tematically apply coding best practices such as input filtering and
rigorous type checking of user input. By changing the develop-
ment paradigm in which SQL queries are created, these techniques
eliminate the coding practices that make most SQLIAs possible.
Although effective, these techniques have the drawback that they
require developers to learn and use a new programming paradigm
or query-development process. Furthermore, because they focus on
using a new development process, they do not provide any type of
protection or improved security for existing legacy systems.

IntrusionDetection Systems. Valeur and colleagues [36] pro-
pose the use of an Intrusion Detection System (IDS) to detect SQLIAs.
Their IDS system is based on a machine learning technique that is
trained using a set of typical application queries. The technique
builds models of the typical queries and then monitors the applica-
tion at runtime to identify queries that do not match the model. In
their evaluation, Valeur and colleagues have shown that their sys-
tem is able to detect attacks with a high rate of success. However,
the fundamental limitation of learning based techniques is that they
can provide no guarantees about their detection abilities because
their success is dependent on the quality of the training set used. A
poor training set would cause the learning technique to generate a
large number of false positives and negatives.

Proxy Filters. Security Gateway [33] is a proxy filtering sys-
tem that enforces input validation rules on the data flowing to a
Web application. Using their Security Policy Descriptor Language
(SPDL), developers provide constraints and specify transformations
to be applied to application parameters as they flow from the Web
page to the application server. Because SPDL is highly expressive,
it allows developers considerable freedom in expressing their poli-
cies. However, this approach is human-based and, like defensive
programming, requires developers to know not only which data
needs to be filtered, but also what patterns and filters to apply to
the data.

Instruction Set Randomization. SQLrand [5] is an approach
based on instruction-set randomization. SQLrand provides a frame-
work that allows developers to create queries using randomized
instructions instead of normal SQL keywords. A proxy filter in-
tercepts queries to the database and de-randomizes the keywords.
SQL code injected by an attacker would not have been constructed
using the randomized instruction set. Therefore, injected com-
mands would result in a syntactically incorrect query. While this
technique can be very effective, it has several practical drawbacks.
First, since it uses a secret key to modify instructions, security of
the approach is dependent on attackers not being able to discover
the key. Second, the approach imposes a significant infrastruc-
ture overhead because it require the integration of a proxy for the
database in the system.
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Technique Taut. Illegal/ Piggy- Union Stored Infer. Alt.
Incorrect back Proc. Encodings.

AMNESIA [16] • • • • × • •
CSSE [32] • • • • × • ×
IDS [36]        
Java Dynamic Tainting [15] - - - - - - -
SQLCheck [35] • • • • × • •
SQLGuard [6] • • • • × • •
SQLrand [5] • × • • × • ×
Tautology-checker [37] • × × × × × ×
Web App. Hardening [31] • • • • × • ×

Table 1: Comparison of detection-focused techniques with respect to attack types.

Technique Taut. Illegal/ Piggy- Union Stored Infer. Alt.
Incorrect back Proc. Encodings.

JDBC-Checker [12] - - - - - - -
Java Static Tainting* [23] • • • • • • •
Safe Query Objects [7] • • • • × • •
Security Gateway* [33] - - - - - - -
SecuriFly [26] - - - - - - -
SQL DOM [27] • • • • × • •
WAVES [19]      -  
WebSSARI* [20] • • • • • • •

Table 2: Comparison of prevention-focused techniques with respect to attack types.

6. TECHNIQUES EVALUATION
In this section, we evaluate the techniques presented in Section 5

using several different criteria. We first consider which attack types
each technique is able to address. For the subset of techniques that
are based on code improvement, we look at which defensive cod-
ing practices the technique helps enforce. We then identify which
injection mechanism each technique is able to handle. Finally, we
evaluate the deployment requirements of each technique.

6.1 Evaluation with Respect to Attack Types
We evaluated each proposed technique to assess whether it was

capable of addressing the different attack types presented in Sec-
tion 4. For most of the considered techniques, we did not have
access to an implementation because either the technique was not
implemented or its implementation was not available. Therefore,
we evaluated the techniques analytically, as opposed to evaluat-
ing them against actual attacks. For developer-based techniques,
that is, those that required developer intervention, we assumed that
the developers were able to correctly apply all required defensive-
coding practices. In other words, our assessment of these tech-
niques is optimistic compared to what their performance may be in
practice. In our tables, we denote developer-based techniques with
the symbol “*”.
For the purposes of the comparison, we divide the techniques

into two groups: prevention-focused and detection-focused tech-
niques. Prevention-focused techniques are techniques that stati-
cally identify vulnerabilities in the code, propose a different de-
velopment paradigm for applications that generate SQL queries,
or add checks to the application to enforce defensive coding best
practices (see Section 5.1). Detection-focused techniques are tech-
niques that detect attacks mostly at runtime.
Tables 1 and 2 summarize the results of our evaluation. We use

four different types of markings to indicate how a technique per-
formed with respect to a given attack type. We use the symbol “•”
to denote that a technique can successfully stop all attacks of that
type. Conversely, we use the symbol “× ” to denote that a tech-
nique is not able to stop attacks of that type. We used two different

symbols to classify techniques that are only partially effective. The
symbol “  ” denotes a technique that can address the attack type
considered, but cannot provide any guarantees of completeness. An
example of one such technique would be a black-box testing tech-
nique such as WAVES [19] or the IDS based approach from Valeur
and colleagues [36]. The symbol “− ,” denotes techniques that ad-
dress the attack type considered only partially because of intrin-
sics limitations of the underlying approach. For example, JDBC-
Checker [12, 13] detects type-related errors that enable SQL injec-
tion vulnerabilities. However, because type-related errors are only
one of the many possible causes of SQL injection vulnerabilities,
this approach is classified as only partially handling each attack
type.
Half of the prevention-focused techniques effectively handle all

of the attack types considered. Some techniques are only partially
effective: JDBC-Checker by definition addresses only a subset of
SQLIAs; Security Gateway, because it can not handle all of the
injection sources (See Section 6.2) can not completely address all
of the attack profiles; SecuriFly, because its prevention method is
to escape all SQL meta-characters, which still would allow injec-
tion into numeric fields; and WAVES, which because it is a testing-
based technique, can not provide guarantees as to its completeness.
We believe that, overall, the prevention-focused techniques per-
formed well because they incorporate the defensive coding prac-
tices in their prevention mechanisms. See Section 6.4 for further
discussion on this topic.
Most of the detection-focused techniques perform fairly uniformly

against the various attack types. The three exceptions are the IDS-
based approach by Valeur and colleagues [36], whose effectiveness
depends on the quality of the training set used, Java Dynamic Taint-
ing [15], whose performance is negatively affected by the fact that
its untainting operations allow input to be used without regard to
the quality of the check, and Tautology-checker, which by defini-
tion can only address tautology-based attacks.
Two attack types, stored procedures and alternate encodings, caused

problems for most techniques. With stored procedures, the code
that generates the query is stored and executed on the database.
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Technique Modify Code Base Detection Prevention Additional Infrastructure
AMNESIA [16] No Automated Automated None
CSSE [32] No Automated Automated Custom PHP Interpreter
IDS [36] No Automated Generate Report IDS System-Training Set
JDBC-Checker [12] No Automated Code Suggestions None
Java Dynamic Tainting [15] No Automated Automated None
Java Static Tainting [23] No Automated Code Suggestions None
Safe Query Objects [7] Yes N/A Automated Developer Training
SecuriFly [26] No Automated Automated None
Security Gateway [33] No Manual Specification Automated Proxy Filter
SQLCheck [35] Yes Semi-Automated Automated Key Management
SQLGuard [6] Yes Semi-Automated Automated None
SQL DOM [27] Yes N/A Automated Developer Training
SQLrand [5] Yes Automated Automated Proxy, Developer Training, Key Management
Tautology-checker [37] No Automated Code Suggestions None
WAVES [19] No Automated Generate Report None
Web App. Hardening [31] No Automated Automated Custom PHP Interpreter
WebSSARI [20] No Automated Semi-Automated None

Table 3: Comparison of techniques with respect to deployment requirements.

Technique Input type Encoding of Identification of all Positive pattern
checking input input sources matching

JDBC-Checker [12] Yes No No No
Java Static Tainting [23] No No Yes No
Safe Query Objects [7] Yes Yes N/A No
SecuriFly [26] No Yes Yes No
Security Gateway [26] Yes Yes No Yes
SQL DOM [27] Yes Yes N/A No
WebSSARI [20] Yes Yes Yes Yes

Table 4: Evaluation of Code Improvement Techniques with Respect to Common Development Errors.

Most of the techniques considered focused only on queries gener-
ated within the application. Expanding the techniques to also en-
compass the queries generated and executed on the database is not
straightforward and would, in general, require substantial effort.
For this reason, attacks based on stored procedures are problematic
for many techniques. Attacks based on alternate encoding are also
difficult to handle. Only three techniques, AMNESIA, SQLCheck,
and SQLGuard explicitly address these types of attacks. The rea-
son why these techniques are successful against such attacks is that
they use the database lexer or parser to interpret a query string in
the same way that the database would. Other techniques that score
well in this category are either developer-based techniques (i.e.,
Java Static Tainting and WebSSARI) or techniques that address the
problem by using a standard API (i.e., SQL DOM and Safe Query
Objects).
It is important to note that we did not take precision into ac-

count in our evaluation. Many of the techniques that we consider
are based on some conservative analysis or assumptions that may
result in false positives. However, because we do not have an ac-
curate way to classify the accuracy of such techniques, short of im-
plementing all of them and assessing their performance on a large
set of legitimate inputs, we have not considered this characteristic
in our assessment.

6.2 EvaluationwithRespect to InjectionMech-
anisms

We assessed each of the techniques with respect to their han-
dling of the various injection mechanisms that we defined in Sec-
tion 2.1. Although most of the techniques do not specifically ad-
dress all of those injection mechanisms, all but two of them could
be easily extended to handle all such mechanisms. The two ex-

ceptions are Security Gateway and WAVES. Security Gateway can
examine only URL parameters and cookie fields. Because it resides
on the network between the application and the attacker, it cannot
examine server variables and second-order injection sources, which
do not pass through the gateway. WAVES can only address injec-
tion through user input because it only generates attacks that can be
submitted to the application via the Web page forms.

6.3 Evaluation with Respect to Deployment
Requirements

Each of the techniques have different deployment requirements.
To determine the effort and infrastructure required to use the tech-
nique, we examined the author’s description of the technique and its
current implementation. We evaluated each technique with respect
to the following criteria: (1) Does the technique require developers
to modify their code base? (2) What is the degree of automation
of the detection aspect of the approach? (3) What is the degree of
automation of the prevention aspect of the approach? (4) What in-
frastructure (not including the tool itself) is needed to successfully
use the technique? The results of this classification are summarized
in Table 3.

6.4 Evaluation of Prevention-Focused Tech-
niques with Respect to Defensive Coding
Practices

Our initial evaluation of the techniques against the various attack
types indicates that the prevention-focused techniques perform very
well against most of these attacks. We hypothesize that this result
is due to the fact that many of the prevention techniques are ac-
tually applying defensive coding best practices to the code base.
Therefore, we examine each of the prevention-focused techniques
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and classify them with respect to the defensive coding practice that
they enforce. Not surprisingly, we find that these techniques en-
force many of these practices. Table 4 summarizes, for each tech-
nique, which of the defensive coding practices it enforces.

7. CONCLUSION
In this paper, we have presented a survey and comparison of cur-

rent techniques for detecting and preventing SQLIAs. To perform
this evaluation, we first identified the various types of SQLIAs
known to date. We then evaluated the considered techniques in
terms of their ability to detect and/or prevent such attacks. We also
studied the different mechanisms through which SQLIAs can be in-
troduced into an application and identified which techniques were
able to handle which mechanisms. Lastly, we summarized the de-
ployment requirements of each technique and evaluated to what
extent its detection and prevention mechanisms could be fully au-
tomated.
Our evaluation found several general trends in the results. Many

of the techniques have problems handling attacks that take advan-
tage of poorly-coded stored procedures and cannot handle attacks
that disguise themselves using alternate encodings. We also found
a general distinction in prevention abilities based on the difference
between prevention-focused and general detection and prevention
techniques. Section 6.4 suggests that this difference could be ex-
plained by the fact that prevention-focused techniques try to incor-
porate defensive coding best practices into their attack prevention
mechanisms.
Future evaluation work should focus on evaluating the techniques’

precision and effectiveness in practice. Empirical evaluations such
as those presented in related work (e.g., [17, 36]) would allow for
comparing the performance of the different techniques when they
are subjected to real-world attacks and legitimate inputs.
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Acronyms 
 
 

SQL   Structured Query Language 
SQLIA   SQL Injection Attacks 
URL   Uniform Resource Locator 
HTML   HyerText Markup Language 
LLC   Limited Liability Corporation 
CTO   Corporate Technical Officer 
VP   Vice President 
CEO   Corporate Executive Officer 
IP   Internet Protocol 
GTRC   Georgia Tech Research Center 
NSA   National Security Agency 
IEEE   Institute of Educational and Electronic Engineers 
FSE   Foundation of Software Engineers 
ICSE   International Conference on Software Engineering 
ISSSE   International Symposium on Secure Software Engineering 
ASE   Automated Software Engineering 
TSE   Transactions on Software Engineering 
DETER  Defense Technology Experimental Research  
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